scholarly journals Effect of Wall Resistance on the Total Thermal Resistance of a Stacked Microchannel Heat Sink

Evergreen ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 138-145
Author(s):  
H. S. Shamsuddin ◽  
U. Abidin ◽  
H. Abd-Zaidan ◽  
N. Mohd-Ghazali
2016 ◽  
Vol 20 (6) ◽  
pp. 2001-2013 ◽  
Author(s):  
Shanglong Xu ◽  
Yihao Wu ◽  
Qiyu Cai ◽  
Lili Yang ◽  
Yue Li

The objective is to optimize the configuration sizes and thermal performance of a multilayer silicon microchannel heat sink by the thermal resistance network model. The effect of structural parameter on the thermal resistance is analyzed by numercal simulation. Taking the thermal resistance as an objective function, a nonlinear and multi-constrained optimization model are proposed for the silicon microchannel heat sink in electronic chips cooling. The sequential quadratic programming (SQP) method is used to do the optimization design of the configuration sizes of the microchannel. For the heat sink with the size of 20mm?20mm and the power of 400 W, the optimized microchannel number, layer, height and width are 40 and 2, 2.2mm and 0.2mm, respectively, and its corresponding total thermal resistance for whole microchannel heat sink is 0.0424 K/W.


2016 ◽  
Vol 78 (10-2) ◽  
Author(s):  
Nik Mohamad Sharif ◽  
Normah Mohd Ghazali

The usage of a very large scale integrated circuits generate high heat fluxes and require an effective cooling system. A microchannel heat sink (MCHS) is one of the reliable cooling systems that had been applied. In terms of performance, a MCHS can be appraised by obtaining low total thermal resistance and pumping power. However, as the total thermal resistance decreases, the pumping power will increase. A few studies have been focused on the minimization of the thermal resistance and pumping power of a multi-stack MCHS. Optimization of two objective functions which are the total thermal resistance and pumping power has been done by using genetic algorithm. It is demonstrated that both objective functions can be minimized by optimizing two design variables which are the channel aspect ratio, , and wall width ratio, . It was found that the usage of a stacked configuration for the MCHS is able to reduce the total thermal resistance. From the optimization, it was found that the optimum number of stacks that can be implemented is three. With the three-stack configuration, the total thermal resistance found is 0.1180 K/W which is 21.8% less compared to the single-stack MCHS. However, the pumping power needed for the three-stack MCHS is increased by 0.17 % compared to single-stack which is 0.7535 W.


2016 ◽  
Vol 20 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Ahmed Adham ◽  
Normah Mohd-Ghazali ◽  
Robiah Ahmad

The optimization of a nanofluid-cooled rectangular microchannel heat sink is reported. Two nanofluids with volume fraction of 1 %, 3 %, 5 %, 7 % and 9 % are employed to enhance the overall performance of the system. An optimization scheme is applied consisting of a systematic thermal resistance model as an analysis method and the elitist non-dominated sorting genetic algorithm (NSGA-II). The optimized results showed that the increase in the particles volume fraction results in a decrease in the total thermal resistance and an increase in the pumping power. For volume fractions of 1 %, 3 %, 5 %, 7 % and 9 %, the thermal resistances were 0.072, 0.07151, 0.07075, 0.07024 and 0.070 [oK W-1] for the SiC-H2O while, they were 0.0705, 0.0697, 0.0694, 0.0692 and 0.069 [oK W-1] for the TiO2-H2O. The associated pumping power were 0.633, 0.638, 0.704, 0.757 and 0.807 [W] for the SiC-H2O while they were 0.645, 0.675, 0.724, 0.755 and 0.798 [W] for the TiO2-H2O. In addition, for the same operating conditions, the nanofluid-cooled system outperformed the water-cooled system in terms of the total thermal resistance (0.069 and 0.11 for nanofluid-cooled and water-cooled systems, respectively). Based on the results observed in this study, nanofluids should be considered as the future coolant for electronic devices cooling systems.


2016 ◽  
Vol 78 (10-2) ◽  
Author(s):  
Nik Ahmad Faiz Nik Mazlam ◽  
Normah Mohd-Ghazali ◽  
Thierry Mare ◽  
Patrice Estelle ◽  
Salma Halelfadl

The microchannel heat sink (MCHS) has been established as an effective heat removal system in electronic chip packaging. With increasing power demand, research has advanced beyond the conventional coolants of air and water towards nanofluids with their enhanced heat transfer capabilities. This research had been carried out on the optimization of the thermal and hydrodynamic performance of a rectangular microchannel heat sink (MCHS) cooled with carbon nanotube (CNT) nanofluid, a coolant that has recently been discovered with improved thermal conductivity. Unlike the common nanofluids with spherical particles, nanotubes generally come in cylindrical structure characterized with different aspect ratios. A volume concentration of 0.1% of the CNT nanofluid is used here; the nanotubes have an average diameter and length of 9.2 nm and 1.5 mm respectively. The nanofluid has a density of 1800 kg/m3 with carbon purity 90% by weight having lignin as the surfactant. The approach used for the optimization process is based on the thermal resistance model and it is analyzed by using the non-dominated sorting multi-objective genetic algorithm. Optimized outcomes include the channel aspect ratio and the channel wall ratio at the optimal values of thermal resistance and pumping power. The optimized results show that, at high operating temperature of 40°C the use of CNT nanofluid reduces the total thermal resistance by 3% compared to at 20°C and consequently improve the thermal performance of the fluid. In terms of the hydrodynamic performance, the pumping power is also being reduced significantly by 35% at 40°C compared to the lower operating temperature.  


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Afzal Husain ◽  
Kwang-Yong Kim

A microchannel heat sink shape optimization has been performed using response surface approximation. Three design variables related to microchannel width, depth, and fin width are selected for optimization, and thermal resistance has been taken as objective function. Design points are chosen through a three-level fractional factorial design of sampling methods. Navier–Stokes and energy equations for steady, incompressible, and laminar flow and conjugate heat transfer are solved at these design points using a finite volume solver. Solutions are carefully validated with the analytical and experimental results and the values of objective function are calculated at the specified design points. Using the numerically evaluated objective-function values, a polynomial response surface model is constructed and the optimum point is searched by sequential quadratic programming. The process of shape optimization greatly improves the thermal performance of the microchannel heat sink by decreasing thermal resistance of about 12% of the reference shape. Sensitivity of objective function to design variables has been studied to utilize the substrate material efficiently.


2011 ◽  
Vol 8 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Pradeep Hegde ◽  
Mukesh Patil ◽  
K. N. Seetharamu

Thermal performance of a water cooled multistack microchannel heat sink with counterflow arrangement has been analyzed using the finite element method. Performance parameters such as thermal resistance, pressure drop, and pumping power are computed for a typical counterflow heat sink with different number of stacks. The temperature distribution in a typical multistack counterflow microchannel heat sink is obtained for different numbers of stacks and plotted along the channel length. A parametric study involving the effects of number of stacks and channel aspect ratio on thermal resistance and pressure drop of the heat sink is done. The finite element model developed for the analysis is simple and consumes less computational time.


2013 ◽  
Vol 444-445 ◽  
pp. 1101-1106
Author(s):  
Li Feng Wang ◽  
Bao Dong Shao ◽  
He Ming Cheng ◽  
Ying He

The configuration sizes of multi-layer rectangle micro-channel heat sink are optimized, which has been widely used to cool electronic chip for its high heat transfer coefficient and compact structure. Taking the thermal resistance and the pressure drop as goal functions, a binary-objective optimization model was proposed for the multi-layer rectangle micro-channel heat sink based on Sequential Quadratic Programming (SQP) method. The number of optimized micro-channel in width n1 and that in height n2 are 24 and 3, the width of optimized micro-channel Wc and fin Wf are 360 and 55μm, the height of optimized micro-channel Hc is 1000μm, and the corresponding total thermal resistance of the whole micro-channel heat sink is 1.5429 °C/W. The corresponding pressure drop is about 2.3454 Pa. When the velocity of liquid is larger than 0.3 m/s, the effect of change of velocity of liquid on the thermal resistance and pressure drop can be neglected.


CFD Letters ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 100-112
Author(s):  
Shugata Ahmed ◽  
Erwin Sulaeman ◽  
Ahmad Faris Ismail ◽  
Muhammad Hasibul Hasan ◽  
Zahir Hanouf

In recent years, researchers are investigating several potential applications of two-phase flow in micro-gap heat sinks; electronic cooling is one of them. Further, internal micro-fins are used to enhance the heat transfer rate. However, the pressure drop penalty due to small gap height and fin surfaces is a major concern. Hence, minimization of thermal resistance and pressure drop is required. In this paper, effects of operating conditions, e.g., wall heat flux, pumping power, and inlet void fraction, on total thermal resistance and pressure drop in a micro-gap heat sink with internal micro-fins of rectangular and triangular profiles have been investigated by numerical analysis for the R-134a coolant. Furthermore, optimization of these parameters has been carried out by response surface methodology. Simulation results show that rectangular micro-fins show superior performance compared to triangular fins in reducing thermal resistance. Finally, for an optimum condition (7.1202×10-5 W pumping power, 1.2×107 Wm-2 heat flux, and 0.03 inlet void fraction), thermal resistance and pressure drop are reduced by 56.3% and 87.2%, respectively.


Sign in / Sign up

Export Citation Format

Share Document