scholarly journals Analytical and Numerical Study of the Temperature Distribution for a Solid Sphere subjected to a Uniform Heat Generation

2017 ◽  
Vol 168 (2) ◽  
pp. 30-37
Author(s):  
Hussein K.
Author(s):  
Marcin Rowinski ◽  
Yeng Ch. Soh ◽  
Timothy J. White ◽  
Ching Ch. Chieng ◽  
Jiyun Zhao

Generation III/III+ nuclear reactors operate with working fluid under subcritical conditions (Tc = 647K, pc = 22.115MPa). The efficiency, limited by the ratio of source and sink temperatures, is restricted by operating below the critical temperature. The supercritical water reactors (SCWRs) are able to rise efficiency limit while operating at the supercritical conditions. The amount of energy carried by working fluid is higher leading to potential efficiency improvement of nearly 30% above current nuclear stations. Therefore, rendering nuclear energy as one of the most efficient decarbonized electrical energy sources with efficiency of 45% and capacity factor of ca. 90%. Typical capacity factors of competing wind turbines and solar PV cells reaches 45% and 15% while the efficiencies 50% and 45%, respectively. In a subcritical reactor a uniform heat flux is generated due to relatively constant fuel moderation. However, due to a change of density during transition from sub- to supercritical conditions, the fuel moderation is uneven along the fuel rod and results in a non-uniform heat generation. The literature on SCWR neutronics suggests higher heat generation at the fuel channel entrance. In this paper we simulated for the first time such non-uniform heat flux generated in a SCWR, we analyze the impacts of such flux on the working medium flow and suggest ways to mitigate negative impacts of non-uniform heat flux. The study was conducted with use of Computational Fluid Dynamics (CFD) software. Obtained results show that the shape of heat flux curve along the channel highly influences the wall temperature distribution along the fuel channel. The differences in maximum wall temperatures can be up to 200K for different curve’s shape. Moreover, the maximum wall temperature is always higher than in default case i.e. when uniform heat flux is applied. It is possible to control the wall temperature distribution by adjusting the shape of heat flux along the axis. Such adjustment can be made by using different enrichment levels along the fuel rod axis, unfortunately any change in power distribution caused rapid temperature increase at the upstream location.


2006 ◽  
Vol 11 (4) ◽  
pp. 331-343 ◽  
Author(s):  
M. S. Alam ◽  
M. M. Rahman ◽  
M. A. Samad

The problem of combined free-forced convection and mass transfer flow over a vertical porous flat plate, in presence of heat generation and thermaldiffusion, is studied numerically. The non-linear partial differential equations and their boundary conditions, describing the problem under consideration, are transformed into a system of ordinary differential equations by using usual similarity transformations. This system is solved numerically by applying Nachtsheim-Swigert shooting iteration technique together with Runge-Kutta sixth order integration scheme. The effects of suction parameter, heat generation parameter and Soret number are examined on the flow field of a hydrogen-air mixture as a non-chemical reacting fluid pair. The analysis of the obtained results showed that the flow field is significantly influenced by these parameters.


Author(s):  
M. Palaniappan ◽  
V. Ng ◽  
R. Heiderhoff ◽  
J.C.H. Phang ◽  
G.B.M. Fiege ◽  
...  

Abstract Light emission and heat generation of Si devices have become important in understanding physical phenomena in device degradation and breakdown mechanisms. This paper correlates the photon emission with the temperature distribution of a short channel nMOSFET. Investigations have been carried out to localize and characterize the hot spots using a spectroscopic photon emission microscope and a scanning thermal microscope. Frontside investigations have been carried out and are compared and discussed with backside investigations. A method has been developed to register the backside thermal image with the backside illuminated image.


Author(s):  
Zumrat Usmanova ◽  
Emin Sunbuloglu

Numerical simulation of automotive tires is still a challenging problem due to their complex geometry and structures, as well as the non-uniform loading and operating conditions. Hysteretic loss and rolling resistance are the most crucial features of tire design for engineers. A decoupled numerical model was proposed to predict hysteretic loss and temperature distribution in a tire, however temperature dependent material properties being utilized only during the heat generation analysis stage. Cyclic change of strain energy values was extracted from 3-D deformation analysis, which was further used in a thermal analysis as input to predict temperature distribution and thermal heat generation due to hysteretic loss. This method was compared with the decoupled model where temperature dependence was ignored in both deformation and thermal analysis stages. Deformation analysis results were compared with experimental data available. The proposed method of numerical modeling was quite accurate and results were found to be close to the actual tire behavior. It was shown that one-way-coupled method provides rolling resistance and peak temperature values that are in agreement with experimental values as well.


2021 ◽  
Vol 25 ◽  
pp. 100874
Author(s):  
Xin Xu ◽  
Guoqing Zhu ◽  
Xiaojin Zhang ◽  
Guoqiang Chai ◽  
Tianwei Chu

Sign in / Sign up

Export Citation Format

Share Document