scholarly journals Microsponge : An Overview

2021 ◽  
Vol 23 (11) ◽  
pp. 671-682
Author(s):  
Nikita D. Gidde ◽  
◽  
Komal A. Karande ◽  
Snehal S. Jadhav ◽  
Ruksar S. Mistry ◽  
...  

Microsponges are a revolutionary way of medication administration that has a number of advantages. The Microsponges drug delivery system is used to increase the performance of medications that are delivered orally, parenterally, or topically in a variety of conditions. Microsponge is a new technology for controlling medication release and delivering drugs to precise targets. Microsponge technology has been used in topical medicinal solutions to allow for regulated active drug release into the skin, lowering systemic exposure and reducing local cutaneous reactions to active pharmaceuticals. This review discusses the preparation procedures, evaluation methodologies, drug release mechanism, and physical characterization of Microsponges in relation to a Microsponges delivery system. Microsponges are used to deliver a pharmaceutical active component at a low dose while simultaneously improving stability, reducing adverse effects, and modifying drug release.

INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (11) ◽  
pp. 71-73
Author(s):  
Ch. Taraka Ramarao ◽  
◽  
J Vijaya Ratna ◽  
R. B. Srinivasa

The present investigation involves developing gastro retentive drug delivery systems (GFDDS) of alfuzosin HCl using HPMCK100M a is the matrixing agent and floating enhancer. Sodium bicarbonate in the acidic environment reacts with the acid and produces carbon dioxide. The gastro retentive tablets can be formulated to increase the gastric residence time and thereby increase the oral bioavailability. From the drug release study, it was concluded that the AFTB4 formula of HPMC K 100 M matrix tablets gives the controlled release up to 12 hours by showing increased release with floating lag time 24 seconds. Non – Fickian diffusion was the drug release mechanism from the matrix tablets formulated employing HPMC K 100 M. The matrix tablets (AFTB4) formulated employing 40 % HPMC K 100 M are best suited to be used for gastro retentive dosage form of alfuzosin HCl. Finally, it can be concluded that good candidates for the preparation of gastro retentive dosage forms due its gastric stability, gastric absorption and better bioavailability.


2013 ◽  
Vol 456 (1) ◽  
pp. 186-194 ◽  
Author(s):  
Tian Dai ◽  
Enyun Yang ◽  
Yongjun Sun ◽  
Linan Zhang ◽  
Li Zhang ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Abeer M. El-Kady ◽  
Mohammad M. Farag

Bioactive glass nanoparticles were synthesized and tested for the first time as a new delivery system for sustained 5-fluorouracil (5-FU) release. They were characterized by TEM, DTA, TGA, and FT-IR. The porosity % and specific surface area of glass nanoparticles were 85.59% and 378.36 m2/g, respectively. Thein vitrobioactivity evaluation confirmed that bioactive glass disks prepared from these nanoparticles could induce hydroxyapatite layer over their surfaces in simulated body fluid. Thein vitrodrug release experiment indicated that glass nanoparticles could serve as long-term local delivery vehicles for sustained 5-FU release. The release profile of 5-FU showed an initial fast release stage followed by a second stage of slower release. The initial burst release of 5-FU in the first day was about 23% (28.92 mg·L−1) of the total amount of loaded 5-FU, while the final cumulative percentage of the 5-FU released after 32 days was about 45.6% (57.31 mg·L−1) of the total amount of loaded 5-FU. The application of different mathematical models indicated that 5-FU was released by diffusion controlled mechanism and suggested that its release rate was dependent on glass particles dissolution, changes of surface area as well as diameter of glass particles, and concentration of loaded drug.


Author(s):  
Jasvanth E ◽  
Teja D ◽  
Mounika B ◽  
Buchi N Nalluri

Objective: The present investigation was aimed at preparation and evaluation of mouth dissolving films (MDFs) of Ramipril to enhance patient convenience, compliance and to improve bioavailability. Methods: MDFs with 0.5% w/w Ramipril were prepared by a solvent casting method using a wet film applicator. The effects of film formers, wetting/solubilizing, saliva stimulating agents and film modifiers on the physicomechanical and in vitro Ramipril release from MDFs were evaluated. Results: The MDFs prepared were transparent, smooth and showed no re-crystallization upon storage. MDFs casted with hydroxypropyl methylcellulose (HPMC) E3 as film former and polyethylene glycol (PEG-400) as plasticizer showed superior Ramipril release rates and good physicomechanical properties when compared to MDFs with E5 and E15 as film formers. HPMC E3 MDFs with polyvinyl pyrrolidone K30 (PVP K30) and sodium lauryl sulphate (SLS) gave superior drug release properties than MDFs without PVP K30 and SLS. The HPMC E3 MDFs with citric acid (CA) as saliva stimulating and xylitol as soothing agent gave significantly superior in vitro drug release than the MDFs without CA and xylitol. Release kinetics data reveals diffusion as a drug release mechanism. Conclusion: From the obtained results, it can be concluded that the administration of Ramipril as MDF may provide a quick onset of action with enhanced oral bioavailability and therapeutic efficacy.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 40 ◽  
Author(s):  
Ahmed Khames

Because Eplerenone (EPL) is a Biopharmaceutical Classification System (BCS) class-II drug and is prone to extensive liver degradation, it suffers from poor bioavailability after oral administration. This work aimed to prepare liquisolids loaded with EPL-nanoemulsions (EPL-NEs) that have a higher drug release rate and improved bioavailability by the oral route. Based on solubility studies, mixtures of Triacetin (oil) and Kolliphor EL/PEG 400 surfactant/co-surfactant (Smix) in different ratios were used to prepare EPL-NE systems, which were characterized and optimized for droplet size, zeta potential, polydispersity index (PDI), and drug content. Systems were then loaded onto liquisolid formulations and fully evaluated. A liquisolid formulation with better drug release and tableting properties was selected and compared to EPL-NEs and conventional EPL oral tablets in solid-state characterization studies and bioavailability studies in rabbits. Only five NEs prepared at 1:3, 1:2, and 3:1 Smix met the specified optimization criteria. The drug release rate from liquisolids was significantly increased (90% within 45 minutes). EPL-NE also showed significantly improved drug release but with a sustained pattern for four hours. Liquisolid bioavailability reached 2.1 and 1.2 relative to conventional tablets and EPL-NE. This suggests that the EPL-NE liquisolid is a promising oral delivery system with a higher drug release rate, enhanced absorption, decreased liver degradation, and improved bioavailability.


2001 ◽  
Vol 75 (1-2) ◽  
pp. 11-25 ◽  
Author(s):  
Hui-Hui Chia ◽  
Yi-Yan Yang ◽  
Tai-Shung Chung ◽  
Steve Ng ◽  
Jorge Heller

Sign in / Sign up

Export Citation Format

Share Document