Poly(vinyl alcohol)-based electrospun nanofibers for the sustained release of celecoxib: Characterization and evaluation of drug release mechanism

2017 ◽  
Vol 39 ◽  
pp. E221-E227 ◽  
Author(s):  
Mohammad Dinari ◽  
Fateme Bina ◽  
Taghi Khayamian
Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1228
Author(s):  
Peipei Huo ◽  
Xinxu Han ◽  
Wenyu Zhang ◽  
Jing Zhang ◽  
Parveen Kumar ◽  
...  

The application of artemisinin (ART) in the treatment of malaria has been restricted to a certain degree due to its inherent limitations, such as short half-life, poor solubility, limited bioavailability, and re-crystallization. Electrospun nanofibers loaded with ART provide an excellent solution to these limitations and yield sustained drug release as well as inhibition of drug re-crystallization. In this study, ART-loaded polycaprolactone (PCL)/collagen (Col) nanofibers with different proportions of polymers were prepared. ART-loaded PCL/Col nanofibers were characterized, and further ART anti-crystallization and release behaviors were studied. SEM was used to observe the morphology of PCL/Col nanofibers. X-ray diffraction (XRD) was used to characterize the physical state of ART in ART-loaded PCL/Col nanofibers. Fourier transform infrared spectroscopy (FTIR), water contact angle measurement, weight loss, degree of swelling, and drug release experiments can verify the differences in performance of ART-loaded PCL/Col nanofibers due to different polymer ratios. The release curve was analyzed by kinetics, showing sustained release for up to 48 h, and followed the Fickian release mechanism, which was shown by the diffusion index value obtained from the Korsmeyer-Peppas equation.


2005 ◽  
Vol 304 (1-2) ◽  
pp. 91-101 ◽  
Author(s):  
Tetsuo Hayashi ◽  
Hideyoshi Kanbe ◽  
Minoru Okada ◽  
Makoto Suzuki ◽  
Yasuo Ikeda ◽  
...  

2014 ◽  
Vol 894 ◽  
pp. 369-373
Author(s):  
Nutthakritta Phromviyo ◽  
Ekaphan Swatsitang ◽  
Apiwat Chompoosor

This study investigated the use of a biodegradable polyoxalate blended with poly (vinyl alcohol) nanofibers to tailor properties of nanofibers and to control release of Rhodamine B from nanofibers. Nanofibers were prepared using an electrospinning technique. The morphology and average diameter of electrospun nanofibers were investigated using scanning electron microscopy. It was found that poly (vinyl alcohol) to polyoxalate ratio had a significant effect on the size of nanofibers (~175-403 nm). An in vitro release study showed that rate of Rhodamine B release increased with increasing poly (vinyl alcohol)/polyoxalate ratios yielding rate of release in the range of 0.1980.469 mg%/min. The mechanism of rhodamine B release can be explained by a two-stage process of diffusion and degradation. The results suggested that a water-insoluble polyoxalate could govern the rate of drug release. The ability to tune the release of chemicals from nanofibers has significant implications for controlled release of drugs.


2012 ◽  
Vol 1 (8) ◽  
pp. 186 ◽  
Author(s):  
Urmi Das ◽  
Mohammad Salim Hossain

<p>Sustained release Carvedilol matrix tablets constituting Kollidon SR were developed in this study in an attempt to investigate the effect of release modifiers on the release profile of Carvedilol from matrix. Three matrix tablet formulations were prepared by direct compression of Kollidon SR in combination with release modifier (HPMC and Microcrystalline Cellulose) and magnesium stearate. Tablets containing only Kollidon SR with the active ingredient demonstrated a rapid rate of drug release. Incorporation of HPMC in the matrix tablet prolonged the release of drug but incorporation of Microcrystalline Cellulose showed superimposable release pattern with an initial burst effect as confirmed by mean dissolution time and Higuchi release rate data. After 7 hours of dissolution, Carvedilol release from the matrix systems were 91.42%, 83.41%, from formulation F1 and F2 respectively. Formulation F3 exhibited 100 % release at 4 hours. All the tablet formulations showed acceptable pharmaco-technical properties and complied with the in-house specifications for tablet weight variation, friability, hardness, thickness, and diameter. Prepared tablets also showed sustained release property for carvedilol. The drug release mechanism from the matrix tablets of F1 and F2 was found to be followed by Fickian and F3 by Non-Fickian mechanism.</p><p>DOI: <a href="http://dx.doi.org/10.3329/icpj.v1i8.11095">http://dx.doi.org/10.3329/icpj.v1i8.11095</a></p> <p>International Current Pharmaceutical Journal 2012, 1(8): 186-192</p>


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 691
Author(s):  
O. Sánchez-Aguinagalde ◽  
Ainhoa Lejardi ◽  
Emilio Meaurio ◽  
Rebeca Hernández ◽  
Carmen Mijangos ◽  
...  

Chitosan (CS) and poly (vinyl alcohol) (PVA) hydrogels, a polymeric system that shows a broad potential in biomedical applications, were developed. Despite the advantages they present, their mechanical properties are insufficient to support the loads that appear on the body. Thus, it was proposed to reinforce these gels with inorganic glass particles (BG) in order to improve mechanical properties and bioactivity and to see how this reinforcement affects levofloxacin drug release kinetics. Scanning electron microscopy (SEM), X-ray diffraction (XRD), swelling tests, rheology and drug release studies characterized the resulting hydrogels. The experimental results verified the bioactivity of these gels, showed an improvement of the mechanical properties and proved that the added bioactive glass does affect the release kinetics.


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (11) ◽  
pp. 71-73
Author(s):  
Ch. Taraka Ramarao ◽  
◽  
J Vijaya Ratna ◽  
R. B. Srinivasa

The present investigation involves developing gastro retentive drug delivery systems (GFDDS) of alfuzosin HCl using HPMCK100M a is the matrixing agent and floating enhancer. Sodium bicarbonate in the acidic environment reacts with the acid and produces carbon dioxide. The gastro retentive tablets can be formulated to increase the gastric residence time and thereby increase the oral bioavailability. From the drug release study, it was concluded that the AFTB4 formula of HPMC K 100 M matrix tablets gives the controlled release up to 12 hours by showing increased release with floating lag time 24 seconds. Non – Fickian diffusion was the drug release mechanism from the matrix tablets formulated employing HPMC K 100 M. The matrix tablets (AFTB4) formulated employing 40 % HPMC K 100 M are best suited to be used for gastro retentive dosage form of alfuzosin HCl. Finally, it can be concluded that good candidates for the preparation of gastro retentive dosage forms due its gastric stability, gastric absorption and better bioavailability.


Sign in / Sign up

Export Citation Format

Share Document