scholarly journals Vehicle Efficiency Maintaining System

Author(s):  
Rohit Kothawale ◽  
◽  
Sarika Patil ◽  
MANJUSHA NAMEWAR ◽  
Aniket Mahajan ◽  
...  

This project is based on increasing the fuel efficiency of vehicle. Every vehicle is given an economy speed range by the respective company . But this range will vary due to parameters like the weight of the vehicles and passengers, condition of road, slope of the road, temperature ,etc. During real time this economy range will vary . This system will help the driver to maintain actual economy speed. While driving in mountain areas on the slopes, the economy speed range will be different than on plane roads. This system will take all these parameters in account and navigate the driver to get the maximum efficiency in all situations. In addition to this the driver will provide the driver the approximate kilometers the vehicle can travel in the current fuel. The circuit, working and need of the system is briefly discussed in this paper.

2019 ◽  
Vol 2 (5) ◽  
Author(s):  
Tong Wang

The compaction quality of the subgrade is directly related to the service life of the road. Effective control of the subgrade construction process is the key to ensuring the compaction quality of the subgrade. Therefore, real-time, comprehensive, rapid and accurate prediction of construction compaction quality through informatization detection method is an important guarantee for speeding up construction progress and ensuring subgrade compaction quality. Based on the function of the system, this paper puts forward the principle of system development and the development mode used in system development, and displays the development system in real-time to achieve the whole process control of subgrade construction quality.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 505
Author(s):  
Jianfeng Chen ◽  
Jiantian Sun ◽  
Shulin Hu ◽  
Yicai Ye ◽  
Haoqian Huang ◽  
...  

A variety of accurate information inputs are of great importance for automotive control. In this paper, a novel joint soft-sensing strategy is proposed to obtain multi-information under diverse vehicle driving scenarios. This strategy is realized by an information interaction including three modules: vehicle state estimation, road slope observer and vehicle mass determination. In the first module, a variational Bayesian-based adaptive cubature Kalman filter is employed to estimate the vehicle states with the time-variant noise interference. Under the assumption of road continuity, a slope prediction model is proposed to reduce the time delay of the road slope observation. Meanwhile, a fast response nonlinear cubic observer is introduced to design the road slope module. On the basis of the vehicle states and road slope information, the vehicle mass is determined by a forgetting-factor recursive least square algorithm. In the experiments, a contrasted strategy is introduced to analyse and evaluate performance. Results declare that the proposed strategy is effective and has the advantages of low time delay, high accuracy and good stability.


Author(s):  
Weiwei Yang ◽  
Jiejunyi Liang ◽  
Jue Yang ◽  
Nong Zhang

Considering the energy consumption and specific performance requirements of mining trucks, a novel uninterrupted multi-speed transmission is proposed in this paper, which is composed of a power-split device, and a three-speed lay-shaft transmission with a traction motor. The power-split device is adapted to enhance the efficiency of the engine by adjusting the gear ratio continuously. The three-speed lay-shaft transmission is designed based on the efficiency map of traction motor to guarantee the drivability. The combination of the power-split device and three-speed lay-shaft transmission can realize uninterrupted gear shifting with the proposed shift strategy, which benefits from the proposed adjunct function by adequately compensating the torque hole. The detailed dynamic models of the system are built to verify the effectiveness of the proposed shift strategy. To evaluate the maximum fuel efficiency that the proposed uninterrupted multi-speed transmission could achieve, dynamic programming is implemented as the baseline. Due to the “dimension curse” of dynamic programming, a real-time control strategy is designed, which can significantly improve the computing efficiency. The simulation results demonstrate that the proposed uninterrupted multi-speed transmission with dynamic programming and real-time control strategy can improve fuel efficiency by 11.63% and 8.51% compared with conventional automated manual transmission system, respectively.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Davide Dardari ◽  
Nicoló Decarli ◽  
Anna Guerra ◽  
Ashraf Al-Rimawi ◽  
Víctor Marín Puchades ◽  
...  

In this paper, an ultrawideband localization system to improve the cyclists’ safety is presented. The architectural solutions proposed consist of tags placed on bikes, whose positions have to be estimated, and anchors, acting as reference nodes, located at intersections and/or on vehicles. The peculiarities of the localization system in terms of accuracy and cost enable its adoption with enhanced risk assessment units situated on the infrastructure/vehicle, depending on the architecture chosen, as well as real-time warning to the road users. Experimental results reveal that the localization error, in both static and dynamic conditions, is below 50 cm in most of the cases.


Author(s):  
Paulo Figueiras ◽  
Hugo Antunes ◽  
Guilherme Guerreiro ◽  
Ruben Costa ◽  
Ricardo Jardim-Gonçalves

In the recent decades, we have witnessed an increase in the number of vehicles using the road infrastructure, resulting in an increased overload of the road network. To mitigate such problems, caused by the increasing number of vehicles and increasing the efficiency and safety of transport systems has been integrated applications of advanced technology, denominated Intelligent Transport Systems (ITS). However, one problem still unsolved in current road networks is the automatic identification of road events such as accidents or traffic jams, being inhibitor to efficient road management. In order to mitigate this problematic, this paper proposes the development of a technological platform able to detect anomalies (abnormal traffic events) to typical road network status and categorize such anomalies. The proposed work, adopts a complex event processing (CEP) engine able to monitor streams of events and detect specified patterns of events in real time. Data is collectively collected and analysed in real-time from loop sensors deployed in Slovenian highways and national roads, providing traffic flows. This prototype will work with a large number of data, being used to process all data, complex event processing tools. All the data used to validate the present study is based on the Slovenian road network. This work has been carried out in the context of the OPTIMUM Project, funded by the H2020 European Research Framework Program.


Sign in / Sign up

Export Citation Format

Share Document