scholarly journals Trace Analysis of Heavy Metals in Ground Water and Soil near Coal Based Thermal Power Plant Udupi Karnataka

Author(s):  
Nausha Shetty ◽  
◽  
Jyothi K Shetty ◽  
Dr Mohandas Chadaga ◽  
Dr Udaya Shankara H N ◽  
...  

The study involves evaluation of quality of groundwater and soil near the Thermal power plant located in Udupi District, Karnataka, India based on seasonal variation. 24 samples of ground water and soil were collected during Pre-Monsoon, Post- Monsoon and Monsoon Seasons from the places which are surrounding the Thermal Power plant. Collected Ground water samples were tested for detection of various heavy metal concentrations such as Ni, Fe, Mn, Cr, and Pb and soil samples were detected for Ni, Fe, Mn, Cr, Pb, Cd and Co. Collected soil samples were sieved according to different Standard sieve size. After sieving, soil samples were digested using tri-acids (Nitric Acid, Hydrogen peroxide and Concentrated Hydrochloric acid). Both Ground water and Soil samples were analysed for heavy metal contamination by using Atomic Absorptive Spectrometry. From the results obtained for Pre-Monsoon, Post-Monsoon and Monsoon Season it showed that concentration of heavy metals in the samples were exceeding the permissible limit prescribed by WHO and BIS. Hence preliminary treatment should be done before discharging in to Ash ponds.

Author(s):  
Manoj Kumar Ghosh ◽  
Harsha Tiwari

The present study focused on the groundwater contamination due to fly ash disposal of coal-fired thermal power plant into a non-liner ash pond. Tendubhata were selected as study site around ash pond of Marwa thermal power plant. Groundwater samples were collected on random basis using composite sampling method. Ten heavy metals (Ca, Cu, Cd, Cl, Zn, Pb, Ni, Cr, Mn, and Fe) were detected in coal, fly ash, and groundwater samples. Heavy metal concentration in coal and fly ash was assessed by Energy Dispersive X-ray Fluorescence, while AAS was used for groundwater assessment. The observed results revealed the exceeding value of heavy metals prescribed by WHO for groundwater.


Author(s):  
Muhammad Murtaza Qureshi ◽  
Mohammad Amin Qureshi ◽  
Muhammad Saeed Qureshi ◽  
Afzal Shah

This study was aimed to assess the severity of heavy metal contamination in eastern coastal area of Pakistan. Agriculture lands near district Badin coastal area found contaminated due to mega surface canal drain network, carrying untreated industrial and municipal effluents along with pumped saline water. Thirty-two random soil samples were collected from different coastal areas. Arc Geographic Information System was used for spatial mapping. Soil samples from coastal areas of Badin contain average concentrations of heavy metals (mg/kg) as Hg 0.247±0.207, Ni 2.622±1.107,Zn 3.121±0.929, Cu 0.059±0.066, Fe 70.447±1.163, Mn7.062±1.251, Co 0.0167±0.033,Cr0.799±0.718.


2021 ◽  
Vol 306 ◽  
pp. 04013
Author(s):  
Triyani Dewi ◽  
Edhi Martono ◽  
Eko Hanudin ◽  
Rika Harini

Monitoring and assessment of heavy metal concentrations in shallot fields are needed to evaluate the potential risk of contamination due to heavy metals. This study aims to define the status of heavy metal contamination in shallot fields using contamination indices. A total of 184 soil samples (0-20 cm) were taken from shallot fields in Brebes Regency, Central Java. The soil samples were analyzed for the concentration of five heavy metals (Cd, Pb, Ni, Cr, and Co) with HNO3 and HClO4 extracts and measured using AAS. Assessment of the status of heavy metals contamination in the soil using contaminant factor (CF), geo-accumulation index (I-geo), and pollution load index (PLI). The mean concentration in shallot fields showed the following order Cr > Ni > Pb > Co > Cd and the concentration were still below critical limit values. Four metals are Pb, Cr, Co, and Ni are low contamination (CF<1), while Cd is considerable until very high contamination factor. Based on I-geo values, shallot fields are practically uncontaminated of Pb, Co, Ni, and Cr (I-geo<1), meanwhile the status of Cd is uncontaminated to moderately contaminated (0<I-geo<1). Generally, the shallot fields in Brebes Regency, Central Java is unpolluted with five metals (PLI<1).


2019 ◽  
Vol 108 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Şeref Turhan

Abstract Lignite coal is a major and an essential domestic energy source in Turkey. Many environmental problems and human health hazards may arise during lignite coal exploitation, combustion, and waste (fly and bottom ash and slag) disposal. In addition, lignite-burning power plants can be significant contributors to deposition of radiotoxic elements and/or toxic heavy metals on soil and water. The concentrations of thorium (Th) and uranium (U) in a 140 agricultural soil samples collected from the vicinity of a lignite-burning thermal power plant (LBTPP), located in Kangal district of Sivas province in the Central Anatolia region of Turkey, were determined using energy dispersive X-ray fluorescence spectroscopy. The concentrations of Th and U varied from 2.9 to 12.7 μg g−1 with an average value of 5.8 μg g−1 and 0.3–12.3 μg g−1 with an average value of 1.5 μg g−1, respectively. The radiotoxic elements pollution in agricultural soils was evaluated using pollution indices such as geo-accumulation index (Igeo), enrichment factors (EF), pollution index (PI) and Nemerow integrated pollution index (NIPI). The average value of Igeo, EF and PI estimated for Th and U were found as −1.8, 1.2 and 0.44 and −1.7, 1.7 and 0.58, respectively. The results indicated that the soils around Kangal LBTPP were practically unpolluted to low polluted with Th and U. The NIPI values varied from 0.3 to 4.0 with an average value of 0.6. The evaluation result of NIPI revealed that 86 % of total soil samples were non-polluted.


Sign in / Sign up

Export Citation Format

Share Document