Agricultural Tire Energy Efficiency test method and dedicated equipment to measure the fuel consumption and traction of agricultural tires under real field conditions

2017 ◽  
pp. 407-416
Author(s):  
K. Szalay ◽  
L. Kovács ◽  
G. Bércesi ◽  
I. Oldal ◽  
E. Piron ◽  
...  
2013 ◽  
Vol 680 ◽  
pp. 289-294
Author(s):  
Heng Wen Zhang ◽  
Shuo Dong ◽  
Fang Yang

In order to improve identification of new products, we study the energy efficiency test of utility boilers. According to related protocols and test method of the current boiler energy efficiency, we build up the model of boiler thermal efficiency test in direct and indirect procedure. During the procedure, we analysis some key issues such as the blended fuel problem and the desulfurizer’s effect on energy efficiency. On this basis, we develop the Utility Boiler Thermal Efficiency Test System, which is used in boiler industry and achieves the intended purpose.


1978 ◽  
Vol 22 (1) ◽  
pp. 443-443
Author(s):  
John V. Fechter

For ten different kitchen ranges, forty-six different cooks prepared a standard 21 meal menu while the energy used by each cook was measured. The energy efficiency of each range was then determined and the ranges were rank-ordered in two ways—on the basis of measured range efficiency and energy actually used by cooks. In general, the higher the measured efficiency the lower the total energy use. This was an important result because it meant that the range efficiency test method to be required by Department of Energy (formerly Federal Energy Administration) regulations was a fair method for manufacturers to use. In addition to that result, large differences were noted in energy consumption by different cooks on the same range. The implications of those differences, and the need for further research about them will be discussed.


2013 ◽  
Vol 288 ◽  
pp. 296-302 ◽  
Author(s):  
Heng Wen Zhang ◽  
Shuo Dong ◽  
Fang Yang ◽  
Liang Ping Shi

In order to improve identification of new products, we study the energy efficiency test of industrial boilers. According to related protocols and test method of the current boiler energy efficiency, we put forward an effective solution of new boiler products based on indirect procedure. We build up the model of boiler thermal efficiency test in direct and indirect procedure and analysis some key problems in indirect procedure. On this basis, we develop the Industrial Boiler Thermal Efficiency Test System, which is used in boiler industry and achieves the intended purpose.


Author(s):  
Marco Grella ◽  
Fabrizio Gioelli ◽  
Paolo Marucco ◽  
Ingrid Zwertvaegher ◽  
Eric Mozzanini ◽  
...  

AbstractThe pulse width modulation (PWM) spray system is the most advanced technology to obtain variable rate spray application without varying the operative sprayer parameters (e.g. spray pressure, nozzle size). According to the precision agriculture principles, PWM is the prime technology that allows to spray the required amount where needed without varying the droplet size spectra which benefits both the uniformity of spray quality and the spray drift reduction. However, some concerns related to the effect of on–off solenoid valves and the alternating on/off action of adjacent nozzles on final uneven spray coverage (SC) have arisen. Further evaluations of PWM systems used for spraying 3D crops under field conditions are welcomed. A tower-shaped airblast sprayer equipped with a PWM was tested in a vineyard. Twelve configurations, combining duty cycles (DC: 30, 50, 70, 100%) and forward speeds (FS: 4, 6, 8 km h−1), were tested. Two methodologies, namely field-standardized and real field conditions, were adopted to evaluate the effect of DC and FS on (1) SC variability (CV%) along both the sprayer travel direction and the vertical spray profile using long water sensitive papers (WSP), and (2) SC uniformity (IU, index value) within the canopy at different depths and heights, respectively. Furthermore, the SC (%) and deposit density (Nst, no stains cm−2), determined using short WSP, were used to evaluate the spray application performances taking into account the spray volumes applied. Under field-controlled conditions, the pulsing of the PWM system affects both the SC variability measured along the sprayer travel direction and along the vertical spray profile. In contrast, under real field conditions, the PWM system does not affect the uniformity of SC measured within the canopy. The relationship between SC and Nst allowed identification of the ranges of 200–250 and 300–370 l ha−1 as the most suitable spray volumes to be applied for insecticide and fungicide plant protection products, respectively.


2019 ◽  
Vol 161 (A2) ◽  

Energy efficiency subject has been gaining importance in maritime sector. The compressed air is a valuable energy source in operational manner, by the reason of intrinsic lack of efficiency in pressurization process. Operational pressure and leakage rate are the major variables which affect operational efficiency of the system. This study aims to reveal potential energy saving for the compressed air system. To this end, several pressure ranges, 29-30 bars to 14-18 bars, and different leakage rates 2.4% to 45% are evaluated. After the data was obtained from ships, thermodynamic calculations had been carried out. Optimization of pressure saves 47.3% in daily power requirement, 58,2% in compressed air unit cost, 18.4 and 57.4 tons of reduction in fuel consumption and CO2 emissions in a year respectively. High leakage rates can cause 2.7 times more power and fuel consumption. Finally, operating load, as an important indicator of compressor, makes imperfections identifiable.


Author(s):  
Masaru Tsujimoto ◽  
Mariko Kuroda ◽  
Naoto Sogihara

Greenhouse gas shall be reduced from shipping sector. For that purpose the regulation of EEDI (energy efficiency design index for new ships) and SEEMP (ship energy efficiency management plan) have been entry into force from 2013. In order to improve the energy efficiency in ship operation it is necessary to predict the fuel consumption accurately. In actual seas the wave effect is the dominant component of the external forces. In particular it is well known the bow shape above water affects the added resistance in waves. To reflect the effect of the bow shape a method which takes into account the result of simplified tank tests is proposed here. Using the results of tank tests the effect of the bow shape above water can be evaluated with accuracy as well as with robustness. Regarding to the fuel consumption it should be evaluated by combining the ship hydrodynamic performance with the engine characteristics. Especially the operating limits of the main engine, such as the torque limit and the over load protection, are affected to the ship hydrodynamic performance. In rough weather condition the revolution of the main engine will be reduced to be below the operating limits of the engine. This causes the large decrease of ship speed. To prevent the increase of fuel consumption, a control system by Fuel Index as an index of fuel injection has been applied to some ships. The calculation method for the fuel consumption by using Fuel Index is presented. In this paper following contents are reported; 1) development of a calculation method for the added resistance due to waves combined with the simplified tank tests in short waves, 2) comparison of the calculation method with onboard measurement, 3) development of a calculation method for the fuel consumption considering the engine operating mode in actual seas and 4) comparison of the method with onboard measurement of a container ship. From these investigations the availability of the present method is confirmed.


2021 ◽  
Vol 67 (No. 5) ◽  
pp. 45-52
Author(s):  
Gerhard Moitzi ◽  
Reinhard W. Neugschwandtner ◽  
Hans-Peter Kaul ◽  
Helmut Wagentristl

Sustainable crop production requires an efficient usage of fossil energy. This six-year study on a silt loam soil (chernozem) analysed the energy efficiency of four tillage systems (mouldboard plough 25–30 cm, deep conservation tillage 35 cm, shallow conservation tillage 8–10 cm, no-tillage). Fuel consumption, total energy input (made up of both direct and indirect input), grain of maize yield, energy output, net-energy output, energy intensity and energy use efficiency were considered. The input rates of fertiliser, herbicides and seeds were set constant; measured values of fuel consumption were used for all tillage operations. Total fuel consumption for maize (Zea mays L.) production was 81.6, 81.5, 69.5 and 53.2 L/ha for the four tillage systems. Between 60% and 64% of the total energy input (17.0–17.4 GJ/ha) was indirect energy (seeds, fertiliser, herbicides, machinery). The share of fertiliser energy of the total energy input was 36% on average across all tillage treatments. Grain drying was the second highest energy consumer with about 22%. Grain yield and energy output were mainly determined by the year. The tillage effect on yield and energy efficiency was smaller than the growing year effect. Over all six years, maize produced in the no-tillage system reached the highest energy efficiency.  


Sign in / Sign up

Export Citation Format

Share Document