A Human Factor Study of Individual Home Appliance Energy Use

1978 ◽  
Vol 22 (1) ◽  
pp. 443-443
Author(s):  
John V. Fechter

For ten different kitchen ranges, forty-six different cooks prepared a standard 21 meal menu while the energy used by each cook was measured. The energy efficiency of each range was then determined and the ranges were rank-ordered in two ways—on the basis of measured range efficiency and energy actually used by cooks. In general, the higher the measured efficiency the lower the total energy use. This was an important result because it meant that the range efficiency test method to be required by Department of Energy (formerly Federal Energy Administration) regulations was a fair method for manufacturers to use. In addition to that result, large differences were noted in energy consumption by different cooks on the same range. The implications of those differences, and the need for further research about them will be discussed.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Arif Budiyanto ◽  
Muhammad Hanzalah Huzaifi ◽  
Simon Juanda Sirait ◽  
Putu Hangga Nan Prayoga

AbstractSustainable development of container terminals is based on energy efficiency and reduction in CO2 emissions. This study estimated the energy consumption and CO2 emissions in container terminals according to their layouts. Energy consumption was calculated based on utility data as well as fuel and electricity consumptions for each container-handling equipment in the container terminal. CO2 emissions were estimated using movement modality based on the number of movements of and distance travelled by each container-handling equipment. A case study involving two types of container terminal layouts i.e. parallel and perpendicular layouts, was conducted. The contributions of each container-handling equipment to the energy consumption and CO2 emissions were estimated and evaluated using statistical analysis. The results of the case study indicated that on the CO2 emissions in parallel and perpendicular layouts were relatively similar (within the range of 16–19 kg/TEUs). These results indicate that both parallel and perpendicular layouts are suitable for future ports based on sustainable development. The results can also be used for future planning of operating patterns and layout selection in container terminals.


2020 ◽  
Vol 12 (4) ◽  
pp. 1402 ◽  
Author(s):  
Ya Chen ◽  
Wei Xu ◽  
Qian Zhou ◽  
Zhixiang Zhou

The phenomena of “large energy consumption, high carbon emission, and serious environmental pollution” are against the goals of “low energy consumption, low emissions” in China’s industrial sector. The key to solving the problem lies in improving total factor energy efficiency (TFEE) and carbon emission efficiency (TFCE). Considering the heterogeneity of different sub-industries, this paper proposes a three-stage global meta-frontier slacks-based measure (GMSBM) method for measuring TFEE and TFCE, as well as the technology gap by combining meta-frontier technology with slacks-based measure (SBM) using data envelopment analysis (DEA). DEA can effectively avoid the situation where the technology gap ratio (TGR) is larger than unity. This paper uses the three-stage method to empirically analyze TFEE and TFCE of Anhui’s 38 industrial sub-industries in China from 2012 to 2016. The main findings are as follows: (1) Anhui’s industrial sector has low TFEE and TFCE, which has great potential for improvement. (2) TFEE and TFCE of light industry are lower than those of heavy industry under group-frontier, while they are higher than those of heavy industry under meta-frontier. There is a big gap in TFEE and TFCE among sub-industries of light industry. Narrowing the gap among different sub-industries of light industry is conducive to the overall improvement in TFEE and TFCE. (3) The TGR of light industry is significantly higher than that of heavy industry, indicating that there are sub-industries with the most advanced energy use and carbon emission technologies in light industry. And there is a bigger carbon-emitting technology gap in heavy industry, so it needs to encourage technology spillover from light industry to heavy industry. (4) The total performance loss of industrial sub-industries in Anhui mainly comes from management inefficiency, so it is necessary to improve management and operational ability. Based on the findings, some policy implications are proposed.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3804 ◽  
Author(s):  
Chia-Nan Wang ◽  
Thi-Duong Nguyen ◽  
Min-Chun Yu

Despite the many benefits that energy consumption brings to the economy, consuming energy also leads nations to expend more resources on environmental pollution. Therefore, energy efficiency has been proposed as a solution to improve national economic competitiveness and sustainability. However, the growth in energy demand is accelerating while policy efforts to boost energy efficiency are slowing. To solve this problem, the efficiency gains in countries where energy consumption efficiency is of the greatest concern such as China, India, the United States, and Europe, especially, emerging economies, is central. Additionally, governments must take greater policy actions. Therefore, this paper studied 25 countries from Asia, the Americas, and Europe to develop a method combining the grey method (GM) and data envelopment analysis (DEA) slack-based measure model (SMB) to measure and forecast the energy efficiency, so that detailed energy efficiency evaluation can be made from the past to the future; moreover, this method can be extended to more countries around the world. The results of this study reveal that European countries have a higher energy efficiency than countries in Americas (except the United States) and Asian countries. Our findings also show that an excess of total energy consumption is the main reason causing the energy inefficiency in most countries. This study contributes to policymaking and strategy makers by sharing the understanding of the status of energy efficiency and providing insights for the future.


2016 ◽  
Vol 9 (1) ◽  
pp. 229
Author(s):  
Valerie Patrick ◽  
Leslie A. Billhymer ◽  
William Shephard

The U.S. Department of Energy [DOE] established the Consortium for Building Energy Innovation [CBEI] to address commercial building energy efficiency as an innovation cluster, where the regional market context (Note 1) guides the research agenda for market transformation (Porter, 2001). CBEI develops content to support Advanced Energy Retrofits (AERs), a retrofit which results in 50% or greater reduction in building energy use, in small- and medium- sized commercial buildings (less than 250 000 ft<sup>2</sup>). The challenge is collecting input for a market with many stakeholders so that a strategy emerges to implement AERs. This research applies systems and complexity theories to develop a strategy to promote the emergence of AERs in this market incorporating multiple stakeholder perspectives (Note 2).


2013 ◽  
Vol 680 ◽  
pp. 289-294
Author(s):  
Heng Wen Zhang ◽  
Shuo Dong ◽  
Fang Yang

In order to improve identification of new products, we study the energy efficiency test of utility boilers. According to related protocols and test method of the current boiler energy efficiency, we build up the model of boiler thermal efficiency test in direct and indirect procedure. During the procedure, we analysis some key issues such as the blended fuel problem and the desulfurizer’s effect on energy efficiency. On this basis, we develop the Utility Boiler Thermal Efficiency Test System, which is used in boiler industry and achieves the intended purpose.


2021 ◽  
Author(s):  
M.R. Amjath ◽  
◽  
H. Chandanie ◽  
S.D.I.A. Amarasinghe ◽  
◽  
...  

It has been observed that inefficient buildings consume three to five times more energy than efficient buildings. Subsequently, improving the Energy Efficiency (EE) of existing buildings, which account for a significant portion of the energy consumption of the building sector, has become a top priority. Also, Heating, Ventilation, and Air Conditioning (HVAC) and lighting systems typically account for three-quarters of a building's energy consumption. Hence, focus on the energy efficiency improvements associated with these subsystems is entailed to optimise the energy use of buildings in comparison to other energy consumers. Energy Retrofit (ER) is defined as the main approach in improving the energy efficiency of buildings to achieve energy reduction goals. Nevertheless, there is a general lack of awareness regarding ER. Thus, the purpose of this article is to bridge this research gap by critically reviewing the applicable literature on ER. The paper first analysed the role of retrofits in buildings concerning optimising energy performance. The paper also discusses the implementation process of ER, which includes five steps viz. pre-retrofit survey, energy auditing, and performance assessment, identification of suitable and feasible retrofit options, site implementation and commissioning, and validation and verification. Further, different types of ER applicable to HVAC and lighting systems are discussed. In their endeavor to enhance the EE of existing buildings, practitioners could apply the findings of this study, as a basis to understand the available ER types and as a measure to gauge the efficiency of existing buildings, which will facilitate effective decision-making.


Author(s):  
Mac Van Dat ◽  
Tran Ngoc Quang

This paper aims to determine energy use intensity (EUI) and the percentage of end-use energy consumption in hotel buildings in major cities of Vietnam, including Hanoi, Da Nang and Ho Chi Minh City (HCMC). Data from 32 hotels were gathered from the website on energy efficiency promotion of Ministry of Construction. The average EUI in the whole country was 151 kWh/m2.year, and the figures for Hanoi, Da Nang, and HCMC were 184; 71 and 212 kWh/m2.year, respectively. At the same time, the structure of end-use energy consumption was estimated, of which 54% for heating, ventilation and air conditioning (HVAC), 10% for lighting, 19% for plug equipment and 17% for lifts. Keywords: energy consumption; energy use intensity (EUI); end-use energy consumption.


Author(s):  
Teresa Parejo-Navajas

AbstractThe behavior of occupants in buildings has an enormous impact on their energy consumption. Despite the efforts to improve the energy efficiency in buildings, there are still many barriers that need to be overcome. Behavior change measures -to improve the energy performance of buildings- are focused on both, the design and the use and operation of buildings. If we are really committed to achieving the sustainable development objective to improve our society’s well-being, special attention should be put into energy use behavior as it has been proven to be an effective way for improvement. ResumoO comportamento dos ocupantes em edifícios tem um enorme impacto no seu consumo de energia. Apesar dos esforços para melhorar a eficiência energética nos edifícios, ainda há muitas barreiras que precisam ser superadas. Medidas de mudança de condutas - para melhorar o desempenho energético dos edifícios - são focadas tanto no design como na utilização e operação de edifícios. Se estamos realmente empenhados em alcançar o objetivo de desenvolvimento sustentável para melhorar o bem-estar da nossa sociedade, uma atenção particular deve ser proporcionada em relação as condutas que influem no uso cotidiano de energia, uma vez que se provou ser um meio eficaz de progresso.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3179 ◽  
Author(s):  
Anti Hamburg ◽  
Targo Kalamees

The aim of the renovation of apartment buildings is to lower the energy consumption of those buildings, mainly the heating energy consumption. There are few analyses regarding those other energy consumptions which are also related to the primary energy need for calculating the energy efficiency class, including the primary energy need of calculated heating, domestic hot water (DHW), and household electricity. Indoor temperature is directly connected with heating energy consumption, but it is not known yet how much it will change after renovation. One of the research issues relates to the change of electricity and DHW usage after renovation and to the question of whether this change is related to the users’ behavior or to changes to technical solutions. Thirty-five renovated apartment buildings have been analyzed in this study, where the data of indoor temperature, airflow, and energy consumption for DHW with and without circulation and electricity use in apartments and common rooms has been measured. During research, it turned out that the usage of DHW without circulation and the usage of household electricity do not change after renovation. Yet there is a major increase in indoor temperature and DHW energy use in buildings that did not have circulation before the renovation. In addition, a small increase in the use of electricity in common areas was discovered. This study will offer changes in calculations for the energy efficiency number.


Sign in / Sign up

Export Citation Format

Share Document