scholarly journals The Evolution of Vector Machine Support in the Field of Intrusion Detection Systems

2021 ◽  
Author(s):  
Ouafae Elaeraj ◽  
Cherkaoui Leghris

With the increase in Internet and local area network usage, malicious attacks and intrusions into computer systems are growing. The design and implementation of intrusion detection systems became extremely important to help maintain good network security. Support vector machines (SVM), a classic pattern recognition tool, has been widely used in intrusion detection. They make it possible to process very large data with great efficiency and are easy to use, and exhibit good prediction behavior. This paper presents a new SVM model enriched with a Gaussian kernel function based on the features of the training data for intrusion detection. The new model is tested with the CICIDS2017 dataset. The test proves better results in terms of detection efficiency and false alarm rate, which can give better coverage and make the detection more effective.

Author(s):  
Fu Xiao ◽  
Xie Li

Intrusion Detection Systems (IDSs) are widely deployed with increasing of unauthorized activities and attacks. However they often overload security managers by triggering thousands of alerts per day. And up to 99% of these alerts are false positives (i.e. alerts that are triggered incorrectly by benign events). This makes it extremely difficult for managers to correctly analyze security state and react to attacks. In this chapter the authors describe a novel system for reducing false positives in intrusion detection, which is called ODARM (an Outlier Detection-Based Alert Reduction Model). Their model based on a new data mining technique, outlier detection that needs no labeled training data, no domain knowledge and little human assistance. The main idea of their method is using frequent attribute values mined from historical alerts as the features of false positives, and then filtering false alerts by the score calculated based on these features. In order to filter alerts in real time, they also design a two-phrase framework that consists of the learning phrase and the online filtering phrase. Now they have finished the prototype implementation of our model. And through the experiments on DARPA 2000, they have proved that their model can effectively reduce false positives in IDS alerts. And on real-world dataset, their model has even higher reduction rate.


2015 ◽  
Vol 713-715 ◽  
pp. 2212-2216 ◽  
Author(s):  
Xiao Bin Wang ◽  
Yong Jun Wang ◽  
Yong Lin Sun

Information security is a great challenge for organizations in our modern information world. Existing security facilities like Firewalls, Intrusion Detection Systems and Antivirus are not enough to guarantee the security of information. File is an important carrier of information, which is the intent of quite a number of attackers. In this paper, we extend the FPD-based approach for detecting abnormal file access behaviors. We propose 3 approaches to calculate FPD values in the case of lacking training data, and we apply a k-means based unsupervised approach to distinguish between normal processes and abnormal ones. Experiment demonstrate that our unsupervised approach is still effective compared to the supervised case with training data.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Sydney M. Kasongo ◽  
Yanxia Sun

AbstractComputer networks intrusion detection systems (IDSs) and intrusion prevention systems (IPSs) are critical aspects that contribute to the success of an organization. Over the past years, IDSs and IPSs using different approaches have been developed and implemented to ensure that computer networks within enterprises are secure, reliable and available. In this paper, we focus on IDSs that are built using machine learning (ML) techniques. IDSs based on ML methods are effective and accurate in detecting networks attacks. However, the performance of these systems decreases for high dimensional data spaces. Therefore, it is crucial to implement an appropriate feature extraction method that can prune some of the features that do not possess a great impact in the classification process. Moreover, many of the ML based IDSs suffer from an increase in false positive rate and a low detection accuracy when the models are trained on highly imbalanced datasets. In this paper, we present an analysis the UNSW-NB15 intrusion detection dataset that will be used for training and testing our models. Moreover, we apply a filter-based feature reduction technique using the XGBoost algorithm. We then implement the following ML approaches using the reduced feature space: Support Vector Machine (SVM), k-Nearest-Neighbour (kNN), Logistic Regression (LR), Artificial Neural Network (ANN) and Decision Tree (DT). In our experiments, we considered both the binary and multiclass classification configurations. The results demonstrated that the XGBoost-based feature selection method allows for methods such as the DT to increase its test accuracy from 88.13 to 90.85% for the binary classification scheme.


2020 ◽  
Vol 3 (2) ◽  
pp. 196-206
Author(s):  
Mausumi Das Nath ◽  
◽  
Tapalina Bhattasali

Due to the enormous usage of the Internet, users share resources and exchange voluminous amounts of data. This increases the high risk of data theft and other types of attacks. Network security plays a vital role in protecting the electronic exchange of data and attempts to avoid disruption concerning finances or disrupted services due to the unknown proliferations in the network. Many Intrusion Detection Systems (IDS) are commonly used to detect such unknown attacks and unauthorized access in a network. Many approaches have been put forward by the researchers which showed satisfactory results in intrusion detection systems significantly which ranged from various traditional approaches to Artificial Intelligence (AI) based approaches.AI based techniques have gained an edge over other statistical techniques in the research community due to its enormous benefits. Procedures can be designed to display behavior learned from previous experiences. Machine learning algorithms are used to analyze the abnormal instances in a particular network. Supervised learning is essential in terms of training and analyzing the abnormal behavior in a network. In this paper, we propose a model of Naïve Bayes and SVM (Support Vector Machine) to detect anomalies and an ensemble approach to solve the weaknesses and to remove the poor detection results


2021 ◽  
Vol 2021 ◽  
pp. 1-28
Author(s):  
Khalid M. Al-Gethami ◽  
Mousa T. Al-Akhras ◽  
Mohammed Alawairdhi

Optimizing the detection of intrusions is becoming more crucial due to the continuously rising rates and ferocity of cyber threats and attacks. One of the popular methods to optimize the accuracy of intrusion detection systems (IDSs) is by employing machine learning (ML) techniques. However, there are many factors that affect the accuracy of the ML-based IDSs. One of these factors is noise, which can be in the form of mislabelled instances, outliers, or extreme values. Determining the extent effect of noise helps to design and build more robust ML-based IDSs. This paper empirically examines the extent effect of noise on the accuracy of the ML-based IDSs by conducting a wide set of different experiments. The used ML algorithms are decision tree (DT), random forest (RF), support vector machine (SVM), artificial neural networks (ANNs), and Naïve Bayes (NB). In addition, the experiments are conducted on two widely used intrusion datasets, which are NSL-KDD and UNSW-NB15. Moreover, the paper also investigates the use of these ML algorithms as base classifiers with two ensembles of classifiers learning methods, which are bagging and boosting. The detailed results and findings are illustrated and discussed in this paper.


Author(s):  
Leandros Maglaras ◽  
Helge Janicke ◽  
Jianmin Jiang ◽  
Andrew Crampton

SCADA (Supervisory Control and Data Acquisition) systems are a critical part of modern national critical infrastructure (CI) systems. Due to the rapid increase of sophisticated cyber threats with exponentially destructive effects, intrusion detection systems (IDS) must systematically evolve. Specific intrusion detection systems that reassure both high accuracy, low rate of false alarms and decreased overhead on the network traffic must be designed for SCADA systems. In this book chapter we present a novel IDS, namely K-OCSVM, that combines both the capability of detecting novel attacks with high accuracy, due to its core One-Class Support Vector Machine (OCSVM) classification mechanism and the ability to effectively distinguish real alarms from possible attacks under different circumstances, due to its internal recursive k-means clustering algorithm. The effectiveness of the proposed method is evaluated through extensive simulations that are conducted using realistic datasets extracted from small and medium sized HTB SCADA testbeds.


Sign in / Sign up

Export Citation Format

Share Document