scholarly journals Morphological Analysis of Japanese Hiragana Sentences using the BI-LSTM CRF Model

2021 ◽  
Author(s):  
Jun Izutsu ◽  
Kanako Komiya

This study proposes a method to develop neural models of the morphological analyzer for Japanese Hiragana sentences using the Bi-LSTM CRF model. Morphological analysis is a technique that divides text data into words and assigns information such as parts of speech. This technique plays an essential role in downstream applications in Japanese natural language processing systems because the Japanese language does not have word delimiters between words. Hiragana is a type of Japanese phonogramic characters, which is used for texts for children or people who cannot read Chinese characters. Morphological analysis of Hiragana sentences is more difficult than that of ordinary Japanese sentences because there is less information for dividing. For morphological analysis of Hiragana sentences, we demonstrated the effectiveness of fine-tuning using a model based on ordinary Japanese text and examined the influence of training data on texts of various genres.

2019 ◽  
Author(s):  
Auss Abbood ◽  
Alexander Ullrich ◽  
Rüdiger Busche ◽  
Stéphane Ghozzi

AbstractAccording to the World Health Organization (WHO), around 60% of all outbreaks are detected using informal sources. In many public health institutes, including the WHO and the Robert Koch Institute (RKI), dedicated groups of epidemiologists sift through numerous articles and newsletters to detect relevant events. This media screening is one important part of event-based surveillance (EBS). Reading the articles, discussing their relevance, and putting key information into a database is a time-consuming process. To support EBS, but also to gain insights into what makes an article and the event it describes relevant, we developed a natural-language-processing framework for automated information extraction and relevance scoring. First, we scraped relevant sources for EBS as done at RKI (WHO Disease Outbreak News and ProMED) and automatically extracted the articles’ key data: disease, country, date, and confirmed-case count. For this, we performed named entity recognition in two steps: EpiTator, an open-source epidemiological annotation tool, suggested many different possibilities for each. We trained a naive Bayes classifier to find the single most likely one using RKI’s EBS database as labels. Then, for relevance scoring, we defined two classes to which any article might belong: The article is relevant if it is in the EBS database and irrelevant otherwise. We compared the performance of different classifiers, using document and word embeddings. Two of the tested algorithms stood out: The multilayer perceptron performed best overall, with a precision of 0.19, recall of 0.50, specificity of 0.89, F1 of 0.28, and the highest tested index balanced accuracy of 0.46. The support-vector machine, on the other hand, had the highest recall (0.88) which can be of higher interest for epidemiologists. Finally, we integrated these functionalities into a web application called EventEpi where relevant sources are automatically analyzed and put into a database. The user can also provide any URL or text, that will be analyzed in the same way and added to the database. Each of these steps could be improved, in particular with larger labeled datasets and fine-tuning of the learning algorithms. The overall framework, however, works already well and can be used in production, promising improvements in EBS. The source code is publicly available at https://github.com/aauss/EventEpi.


2020 ◽  
Author(s):  
David DeFranza ◽  
Himanshu Mishra ◽  
Arul Mishra

Language provides an ever-present context for our cognitions and has the ability to shape them. Languages across the world can be gendered (language in which the form of noun, verb, or pronoun is presented as female or male) versus genderless. In an ongoing debate, one stream of research suggests that gendered languages are more likely to display gender prejudice than genderless languages. However, another stream of research suggests that language does not have the ability to shape gender prejudice. In this research, we contribute to the debate by using a Natural Language Processing (NLP) method which captures the meaning of a word from the context in which it occurs. Using text data from Wikipedia and the Common Crawl project (which contains text from billions of publicly facing websites) across 45 world languages, covering the majority of the world’s population, we test for gender prejudice in gendered and genderless languages. We find that gender prejudice occurs more in gendered rather than genderless languages. Moreover, we examine whether genderedness of language influences the stereotypic dimensions of warmth and competence utilizing the same NLP method.


2020 ◽  
Vol 34 (05) ◽  
pp. 8504-8511
Author(s):  
Arindam Mitra ◽  
Ishan Shrivastava ◽  
Chitta Baral

Natural Language Inference (NLI) plays an important role in many natural language processing tasks such as question answering. However, existing NLI modules that are trained on existing NLI datasets have several drawbacks. For example, they do not capture the notion of entity and role well and often end up making mistakes such as “Peter signed a deal” can be inferred from “John signed a deal”. As part of this work, we have developed two datasets that help mitigate such issues and make the systems better at understanding the notion of “entities” and “roles”. After training the existing models on the new dataset we observe that the existing models do not perform well on one of the new benchmark. We then propose a modification to the “word-to-word” attention function which has been uniformly reused across several popular NLI architectures. The resulting models perform as well as their unmodified counterparts on the existing benchmarks and perform significantly well on the new benchmarks that emphasize “roles” and “entities”.


Vector representations for language have been shown to be useful in a number of Natural Language Processing tasks. In this paper, we aim to investigate the effectiveness of word vector representations for the problem of Sentiment Analysis. In particular, we target three sub-tasks namely sentiment words extraction, polarity of sentiment words detection, and text sentiment prediction. We investigate the effectiveness of vector representations over different text data and evaluate the quality of domain-dependent vectors. Vector representations has been used to compute various vector-based features and conduct systematically experiments to demonstrate their effectiveness. Using simple vector based features can achieve better results for text sentiment analysis of APP.


2022 ◽  
Vol 3 (1) ◽  
pp. 1-16
Author(s):  
Haoran Ding ◽  
Xiao Luo

Searching, reading, and finding information from the massive medical text collections are challenging. A typical biomedical search engine is not feasible to navigate each article to find critical information or keyphrases. Moreover, few tools provide a visualization of the relevant phrases to the query. However, there is a need to extract the keyphrases from each document for indexing and efficient search. The transformer-based neural networks—BERT has been used for various natural language processing tasks. The built-in self-attention mechanism can capture the associations between words and phrases in a sentence. This research investigates whether the self-attentions can be utilized to extract keyphrases from a document in an unsupervised manner and identify relevancy between phrases to construct a query relevancy phrase graph to visualize the search corpus phrases on their relevancy and importance. The comparison with six baseline methods shows that the self-attention-based unsupervised keyphrase extraction works well on a medical literature dataset. This unsupervised keyphrase extraction model can also be applied to other text data. The query relevancy graph model is applied to the COVID-19 literature dataset and to demonstrate that the attention-based phrase graph can successfully identify the medical phrases relevant to the query terms.


2015 ◽  
Vol 3 ◽  
pp. 461-473 ◽  
Author(s):  
Daniel Beck ◽  
Trevor Cohn ◽  
Christian Hardmeier ◽  
Lucia Specia

Structural kernels are a flexible learning paradigm that has been widely used in Natural Language Processing. However, the problem of model selection in kernel-based methods is usually overlooked. Previous approaches mostly rely on setting default values for kernel hyperparameters or using grid search, which is slow and coarse-grained. In contrast, Bayesian methods allow efficient model selection by maximizing the evidence on the training data through gradient-based methods. In this paper we show how to perform this in the context of structural kernels by using Gaussian Processes. Experimental results on tree kernels show that this procedure results in better prediction performance compared to hyperparameter optimization via grid search. The framework proposed in this paper can be adapted to other structures besides trees, e.g., strings and graphs, thereby extending the utility of kernel-based methods.


2019 ◽  
Vol 6 ◽  
Author(s):  
Catharina Marie Stille ◽  
Trevor Bekolay ◽  
Peter Blouw ◽  
Bernd J. Kröger

JAMIA Open ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 146-150
Author(s):  
Egoitz Laparra ◽  
Steven Bethard ◽  
Timothy A Miller

Abstract Building clinical natural language processing (NLP) systems that work on widely varying data is an absolute necessity because of the expense of obtaining new training data. While domain adaptation research can have a positive impact on this problem, the most widely studied paradigms do not take into account the realities of clinical data sharing. To address this issue, we lay out a taxonomy of domain adaptation, parameterizing by what data is shareable. We show that the most realistic settings for clinical use cases are seriously under-studied. To support research in these important directions, we make a series of recommendations, not just for domain adaptation but for clinical NLP in general, that ensure that data, shared tasks, and released models are broadly useful, and that initiate research directions where the clinical NLP community can lead the broader NLP and machine learning fields.


2019 ◽  
Vol 25 (4) ◽  
pp. 543-557 ◽  
Author(s):  
Afra Alishahi ◽  
Grzegorz Chrupała ◽  
Tal Linzen

AbstractThe Empirical Methods in Natural Language Processing (EMNLP) 2018 workshop BlackboxNLP was dedicated to resources and techniques specifically developed for analyzing and understanding the inner-workings and representations acquired by neural models of language. Approaches included: systematic manipulation of input to neural networks and investigating the impact on their performance, testing whether interpretable knowledge can be decoded from intermediate representations acquired by neural networks, proposing modifications to neural network architectures to make their knowledge state or generated output more explainable, and examining the performance of networks on simplified or formal languages. Here we review a number of representative studies in each category.


Sign in / Sign up

Export Citation Format

Share Document