scholarly journals Applicability of Overlay Non-Delay Tolerant Position-Based Protocols in Highways and Urban Environments for VANET

2021 ◽  
Vol 13 (2) ◽  
pp. 9-24
Author(s):  
Mahmoud Ali Al Shugran

Vehicular Ad hoc Networks (VANETs) is new sort in wireless ad-hoc networks. Vehicle-to-Vehicle (V2V) communication is one of the main communication paradigms that provide a level of safety and convenience to drivers and passengers on the road. In such environment, routing data packet is challenging due to frequently changed of network topology because of highly dynamic nature of vehicles. Thus, routing in VANETs in require for efficient protocols that guarantee message transmission among vehicles. Numerous routing protocols and algorithms have been proposed or enhanced to solve the aforementioned problems. Many position based routing protocols have been developed for routing messages that have been identified to be appropriate for VANETs. This work explores the performances of selected unicast non-delay tolerant overlay position-based routing protocols. The evaluation has been conducted in highway and urban environment in two different scenarios. The evaluation metrics that are used are Packet Delivery Ratio (PDR), Void Problem Occurrence (VPO), and Average Hop Count (AHC).

2021 ◽  
Vol 14 (4) ◽  
pp. 20
Author(s):  
Mahmoud Ali Al Shugran

A Vehicular Ad hoc Network (VANET) is a distinctive situation of wireless ad hoc networks. The designing of the routing protocol considers a critical role in communication in VANET. VANET has specific features compared to other types of wireless ad hoc networks that impose special characteristics for designing of efficient routing protocols.The challenging factor in designing efficient routing protocols for VANET is the high movement of vehicles that incurs a rapid change in the network topology that causes frequent link breakage. This paper presents and evaluates different position-based routing protocols associated with VANETs. The evaluation aiming to determine appropriate specifications for optimal routing protocols’ features achieving best performance within different environmental conditions. The performance comparison is carried out in terms of Packet Delivery Rate (PDR), Void Problem Occurrence Rate (VPOR), and Average Hops Count (AHC).


Author(s):  
Anamika Chauhan ◽  
Kapil Sharma ◽  
Alka Aggarwal

With the ever-escalating amount of vehicular traffic activity on the roads, the efficient management of traffic and safety of the drivers and passengers is of paramount gravity. Vehicular ad-hoc networks (VANETs) have emerged as the systems where vehicles would be perceptive of the locality and can supply the driver with required inputs to take necessary actions to alleviate the various issues. The system is designed to detect and identify essential traffic events and inform all concerned entities and take appropriate action. The characteristics of VANET are the topology is highly mobile, depends on city infrastructure, and the high speed of vehicles. These challenges result in frequent disruption of connections, long delays in delivering the messages. The challenges are overcome through the vehicular delay-tolerant network (VDTN) routing protocols are used that can facilitate communication under these network challenges. In this chapter, the authors evaluate the effect of the node density and message sizes on the performance of the various VDTN routing protocols.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
David Chunhu Li ◽  
Li-Der Chou ◽  
Li-Ming Tseng ◽  
Yi-Ming Chen ◽  
Kai-Wei Kuo

To support an increasing amount of various new applications in vehicular ad hoc networks (VANETs), routing protocol design has become an important research challenge. In this paper, we propose a Bipolar Traffic Density Awareness Routing (BTDAR) protocol for vehicular ad hoc networks. The BTDAR aims at providing reliable and efficient packets delivery for dense and sparse vehicle traffic network environments. Two distinct routing protocols are designed to find an optimal packet delivery path in varied vehicular networks. In dense networks, a link-stability based routing protocol is designed to take vehicles connectivity into consideration in its path selection policy and maximize the stability of intervehicle communications. In sparse networks, a min-delay based routing protocol is proposed to select an optimal route by analyzing intermittent vehicle connectivity and minimize packets delivery latency. Intervehicles connectivity model is analyzed. The performance of BTDAR is examined by comparisons with three distinct VANET routing protocols. Simulation results show that the BTDAR outperforms compared counterpart routing protocols in terms of packet delivery delay and packet delivery ratio.


2021 ◽  
Author(s):  
Khaled S. El Gayyar ◽  
Ahmed I. Saleh ◽  
Labib M. Labib

Abstract Vehicular ad-hoc network (VANET) plays a significant role in future intelligent transportation systems. The main objective of vehicular ad hoc networks (VANETs) is to improve driver safety and traffic efficiency. Many researchers proposed different schemes to improve communication efficiency. It is quite challenging where vehicles’ speed, Direction, and density of neighbors on the move are not consistent. Although several routing protocols have been introduced to manage data exchange among vehicles in VANETS, they still suffer from many drawbacks such as lost packets or time penalties. This paper introduced a new Fog Based Routing Strategy, which constructs a reliable system of adaptive, stable, and efficient routing networks. FBRS consists of two main phases: System Setup Phase (SSP) and System Operation Phase (SOP). SSP creates a cluster network, collects its nodes’ data, mining routes between them, and ranking paths using Dijkstra’s algorithm into a simplified table. Although, SOP generates a reliable route between the request of any two nodes for a communication channel and maintains the route against any simultaneous crashes. Recent VANET routing protocols have been compared against FBRS. Experimental results have proven the outperforming of the proposed algorithm against recent routing protocols in terms of packet delivery ratio and routing overhead.


2017 ◽  
Vol 5 (12) ◽  
pp. 7751-7757
Author(s):  
Ahmed Mohamed Abdalla

Vehicular Ad hoc Networks are special kind of Mobile Ad Hoc Networks. VANET is an emerging technology, which enables an extensive range of applications, including road safety, passenger convenience, self-driven vehicles, and intelligent transportation. Routing in Vehicular Ad hoc Networks is a challenging task due to the unique characteristics of the network. Unicast routing protocols in VANETs are the most fundamental protocols in ad hoc environment and they form the basis for constructing other types of protocols. Unicast routing protocols further classified into topology based, position based, cluster based and hybrid protocols. In this paper protocols belonging to unicast non-delay tolerant position based are discussed. We have implemented our comparison on the NS2 simulator. Simulation of NDT routing protocols A-STAR, CAR, and GyTAR are carried out and the results are presented


2021 ◽  
Author(s):  
Khaled S. El Gayyar ◽  
Ahmed I. Saleh ◽  
Labib M. Labib

Abstract Vehicular ad-hoc network (VANET) plays a significant role in future intelligent transportation systems. The main objective of vehicular ad hoc networks (VANETs) is to improve driver safety and traffic efficiency. Many researchers proposed different schemes to improve communication efficiency. It is quite challenging where vehicles’ speed, Direction, and density of neighbors on the move are not consistent. Although several routing protocols have been introduced to manage data exchange among vehicles in VANETS, they still suffer from many drawbacks such as lost packets or time penalties. This paper introduced a new Fog Based Routing Strategy, which constructs a reliable system of adaptive, stable, and efficient routing networks. FBRS consists of two main phases: System Setup Phase (SSP) and System Operation Phase (SOP). SSP creates a cluster network, collects its nodes’ data, mining routes between them, and ranking paths using Dijkstra’s algorithm into a simplified table. Although, SOP generates a reliable route between the request of any two nodes for a communication channel and maintains the route against any simultaneous crashes. Recent VANET routing protocols have been compared against FBRS. Experimental results have proven the outperforming of the proposed algorithm against recent routing protocols in terms of packet delivery ratio and routing overhead.


Author(s):  
Rajnesh Singh ◽  
Neeta Singh ◽  
Aarti Gautam Dinker

TCP is the most reliable transport layer protocol that provides reliable data delivery from source to destination node. TCP works well in wired networks but it is assumed that TCP is less preferred for ad-hoc networks. However, for application in ad-hoc networks, TCP can be modified to improve its performance. Various researchers have proposed improvised variants of TCP by only one or two measures. These one or two measures do not seem to be sufficient for proper analysis of improvised version of TCP. So, in this paper, the performance of different TCP versions is investigated with DSDV and AODV routing Protocols. We analyzed various performance measures such as throughput, delay, packet drop, packet delivery ratio and number of acknowledgements. The simulation results are carried out by varying number of nodes in network simulator tool NS2. It is observed that TCP Newreno achieved higher throughput and packet delivery ratio with both AODV and DSDV routing protocols.Whereas TCP Vegas achieved minimum delay and packet loss with both DSDV and AODV protocol. However TCP sack achieved minimum acknowledgment with both AODV and DSDV routing protocols. In this paper the comparison of all these TCP variants shows that TCP Newreno provides better performance with both AODV and DSDV protocols.


Sign in / Sign up

Export Citation Format

Share Document