scholarly journals Investigating the 1930s Kohl-Larsen collection from the Lake Eyasi Basin, Tanzania

Author(s):  
Gregor Bader ◽  
Pastory Bushozi ◽  
Manuel Will ◽  
Viola Schmid ◽  
Aurore Val ◽  
...  

Since more than 80 years, the University of Tübingen hosts the archaeological collections excavated by Margit and Ludwig Kohl-Larsen between 1934 and 1939 in modern-day Tanzania. Despite the great scientific relevance of these collections, most of them were never published on an international scale and were thus unavailable for the broader Africanist archaeological community. In the light of new excavations around Lake Eyasi, conducted jointly by the Universities of Dar es Salaam and Tübingen and the Senckenberg Gesellschaft für Naturforschung, we decided to under­take a new inventory of the Kohl-Larsen collection, to analyze the assemblages using state of the art methods, link them with new excavation data and make them internationally available. As a first step, here we want to introduce the project by reporting on some preliminary observations from Njarasa Cave. Ultimately this research will help to create a coherent reconstruction of human cultural change and behavioral adaptions over the last ~200.000 years in this important archaeological landscape.

2013 ◽  
Vol 94 (10) ◽  
pp. 1501-1506 ◽  
Author(s):  
Bradley G. Illston ◽  
Jeffrey B. Basara ◽  
Christopher Weiss ◽  
Mike Voss

The WxChallenge, a project developed at the University of Oklahoma, brings a state-of-the-art, fun, and exciting forecast contest to participants at colleges and universities across North America. The challenge is to forecast the maximum and minimum temperatures, precipitation, and maximum wind speeds for select locations across the United States over a 24-h prediction period. The WxChallenge is open to all undergraduate and graduate students, as well as higher-education faculty, staff, and alumni. Through the use of World Wide Web interfaces accessible by personal computers, tablet computer, and smartphones, the WxChallenge provides a state-of-the-art portal to aid participants in submitting forecasts and alleviate many of the administrative issues (e.g., tracking and scoring) faced by local managers and professors. Since its inception in 2006, 110 universities have participated in the contest and it has been utilized as part of the curricula for 140 classroom courses at various institutions. The inherently challenging nature of the WxChallenge has encouraged its adoption as an educational tool. As its popularity has grown, professors have seen the utility of the Wx-Challenge as a teaching aid and it has become an instructional resource of many meteorological classes at institutions for higher learning. In addition to evidence of educational impacts, the competition has already begun to leave a cultural and social mark on the meteorological learning experience.


2018 ◽  
Vol 7 (4) ◽  
pp. 603-622 ◽  
Author(s):  
Leonardo Gutiérrez-Gómez ◽  
Jean-Charles Delvenne

Abstract Several social, medical, engineering and biological challenges rely on discovering the functionality of networks from their structure and node metadata, when it is available. For example, in chemoinformatics one might want to detect whether a molecule is toxic based on structure and atomic types, or discover the research field of a scientific collaboration network. Existing techniques rely on counting or measuring structural patterns that are known to show large variations from network to network, such as the number of triangles, or the assortativity of node metadata. We introduce the concept of multi-hop assortativity, that captures the similarity of the nodes situated at the extremities of a randomly selected path of a given length. We show that multi-hop assortativity unifies various existing concepts and offers a versatile family of ‘fingerprints’ to characterize networks. These fingerprints allow in turn to recover the functionalities of a network, with the help of the machine learning toolbox. Our method is evaluated empirically on established social and chemoinformatic network benchmarks. Results reveal that our assortativity based features are competitive providing highly accurate results often outperforming state of the art methods for the network classification task.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 325
Author(s):  
Zhihao Wu ◽  
Baopeng Zhang ◽  
Tianchen Zhou ◽  
Yan Li ◽  
Jianping Fan

In this paper, we developed a practical approach for automatic detection of discrimination actions from social images. Firstly, an image set is established, in which various discrimination actions and relations are manually labeled. To the best of our knowledge, this is the first work to create a dataset for discrimination action recognition and relationship identification. Secondly, a practical approach is developed to achieve automatic detection and identification of discrimination actions and relationships from social images. Thirdly, the task of relationship identification is seamlessly integrated with the task of discrimination action recognition into one single network called the Co-operative Visual Translation Embedding++ network (CVTransE++). We also compared our proposed method with numerous state-of-the-art methods, and our experimental results demonstrated that our proposed methods can significantly outperform state-of-the-art approaches.


2021 ◽  
Vol 11 (8) ◽  
pp. 3636
Author(s):  
Faria Zarin Subah ◽  
Kaushik Deb ◽  
Pranab Kumar Dhar ◽  
Takeshi Koshiba

Autism spectrum disorder (ASD) is a complex and degenerative neuro-developmental disorder. Most of the existing methods utilize functional magnetic resonance imaging (fMRI) to detect ASD with a very limited dataset which provides high accuracy but results in poor generalization. To overcome this limitation and to enhance the performance of the automated autism diagnosis model, in this paper, we propose an ASD detection model using functional connectivity features of resting-state fMRI data. Our proposed model utilizes two commonly used brain atlases, Craddock 200 (CC200) and Automated Anatomical Labelling (AAL), and two rarely used atlases Bootstrap Analysis of Stable Clusters (BASC) and Power. A deep neural network (DNN) classifier is used to perform the classification task. Simulation results indicate that the proposed model outperforms state-of-the-art methods in terms of accuracy. The mean accuracy of the proposed model was 88%, whereas the mean accuracy of the state-of-the-art methods ranged from 67% to 85%. The sensitivity, F1-score, and area under receiver operating characteristic curve (AUC) score of the proposed model were 90%, 87%, and 96%, respectively. Comparative analysis on various scoring strategies show the superiority of BASC atlas over other aforementioned atlases in classifying ASD and control.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Iram Tazim Hoque ◽  
Nabil Ibtehaz ◽  
Saumitra Chakravarty ◽  
M. Saifur Rahman ◽  
M. Sohel Rahman

Abstract Background Segmentation of nuclei in cervical cytology pap smear images is a crucial stage in automated cervical cancer screening. The task itself is challenging due to the presence of cervical cells with spurious edges, overlapping cells, neutrophils, and artifacts. Methods After the initial preprocessing steps of adaptive thresholding, in our approach, the image passes through a convolution filter to filter out some noise. Then, contours from the resultant image are filtered by their distinctive contour properties followed by a nucleus size recovery procedure based on contour average intensity value. Results We evaluate our method on a public (benchmark) dataset collected from ISBI and also a private real dataset. The results show that our algorithm outperforms other state-of-the-art methods in nucleus segmentation on the ISBI dataset with a precision of 0.978 and recall of 0.933. A promising precision of 0.770 and a formidable recall of 0.886 on the private real dataset indicate that our algorithm can effectively detect and segment nuclei on real cervical cytology images. Tuning various parameters, the precision could be increased to as high as 0.949 with an acceptable decrease of recall to 0.759. Our method also managed an Aggregated Jaccard Index of 0.681 outperforming other state-of-the-art methods on the real dataset. Conclusion We have proposed a contour property-based approach for segmentation of nuclei. Our algorithm has several tunable parameters and is flexible enough to adapt to real practical scenarios and requirements.


Author(s):  
Matteo Chiara ◽  
Federico Zambelli ◽  
Marco Antonio Tangaro ◽  
Pietro Mandreoli ◽  
David S Horner ◽  
...  

Abstract Summary While over 200 000 genomic sequences are currently available through dedicated repositories, ad hoc methods for the functional annotation of SARS-CoV-2 genomes do not harness all currently available resources for the annotation of functionally relevant genomic sites. Here, we present CorGAT, a novel tool for the functional annotation of SARS-CoV-2 genomic variants. By comparisons with other state of the art methods we demonstrate that, by providing a more comprehensive and rich annotation, our method can facilitate the identification of evolutionary patterns in the genome of SARS-CoV-2. Availabilityand implementation Galaxy   http://corgat.cloud.ba.infn.it/galaxy; software: https://github.com/matteo14c/CorGAT/tree/Revision_V1; docker: https://hub.docker.com/r/laniakeacloud/galaxy_corgat. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Elvis Ahmetović ◽  
Zdravko Kravanja ◽  
Nidret Ibrić ◽  
Ignacio E. Grossmann ◽  
Luciana E. Savulescu

Sign in / Sign up

Export Citation Format

Share Document