scholarly journals Synthesis of metal organic framework MIL-53 (Fe)/Fe3O4 and adsorption ability of Congo Red in water invironment

2021 ◽  
Vol 10 (2) ◽  
pp. 94-98
Author(s):  
Hue Dang Thi Minh ◽  
Chau Tran Van ◽  
Giang Hoang Thi Linh ◽  
Luyen Tran Thi ◽  
Chinh Huynh Dang

Composite materials MIL-53(Fe)/Fe3O4 have been successfully synthesized on the basis of MIL-53 metal organic framework materials by hydrothermal method. Material characteristics were studied through XRD, SEM methods. The material has good adsorption capacity of the Congo Red pigment. The Congo Red adsorption activity of the composite material was investigated. The results showed that the adsorption efficiency of Congo Red of MIL-53(Fe)/Fe3O4 reached 98.89% after only 5 minutes, with the concentration of 2.227 mg/l in Congo red solution. The Congo Red adsorption process of MIL-53 (Fe)/Fe3O4 follows the Freundlich isothermal adsorption model.

Author(s):  
Trang Thị Thu Nguyễn ◽  
Ý Thị Đặng ◽  
Linh Hồ Thùy Nguyễn ◽  
Hạnh Thị Kiều Tạ ◽  
Thắng Bách Phan ◽  
...  

Highly porous and biocompatible nano metal-organic framework materials (NMOF) are increasingly being applied in biomedical fields, especially as pharmaceutical adsorbent materials. Curcumin, found in turmeric, is a widely common herb in Eastern which has recently used in many applications in supporting cancer treatment. In the synthesis of MOF materials, the use of surfactants allows to control the morphology, the process of crystal formation and development and particle size of the material. In this research, MIL-100 (Fe) nanomaterials were successfully synthesized at room temperature in the presence of polyvinylpyrrolidone surfactant (PVP) to control the nanoparticle size about 50 nm in size. The synthesized MOF structure and properties were analyzed by using characterization techniques, including powder X-ray diffraction (PXRD), fourier-transform infrared (FT-IR), thermal gravimetric analyses (TGA) and nitrogen isothermal adsorption-desorption at 77 K. The characterization results showed that MIL-100 (Fe) nanomaterials have high crystallinity, large surface area, and highly thermal stability. However, its particle size is very small, only about 50 nm. Curcumin adsorption studies exhibited that this material had the ability to adsorb curcumin with an adsorption capacity up to 64.36 mg g-1. Kinetic and mechanism studies revealed that curcumin adsorption followed the pseudo-second model. In addition, thermodynamic studies proved that this was a spontaneous and exothermic adsorption process.


2017 ◽  
Vol 4 (11) ◽  
pp. 1870-1880 ◽  
Author(s):  
Yitong Han ◽  
Min Liu ◽  
Keyan Li ◽  
Qiao Sun ◽  
Wensheng Zhang ◽  
...  

The adsorption ability of zirconium-based MOF UiO-66 for Congo red can be greatly promoted via the doping of Ti4+.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yi Liu ◽  
Guangyao Qiu ◽  
Tao Li ◽  
Ang Yan ◽  
Yongfeng Liu ◽  
...  

Purpose To treat water pollution, especially the contamination resulted from organic dyes has aroused significant attention around the world, this study aims to prepare the metal organic framework (MOF) materials hybridizing with poly(p-phenylene terephthalamide) (PPTA) by means of a facile refluxing method and to systematically investigate adsorption performance for anionic dye Congo red as target molecule from aqueous solution. Design/methodology/approach The MOF materials hybridized by PPTA were fabricated by virtue of a facile refluxing method, characterized by thermogravimetric analysis, X-ray powder diffraction, Fourier transform infrared and pore structure. Findings The results showed that pseudo-second-order kinetic model could better describe the adsorption process for all the four materials, whereas Elovich model also fitted the process for the hybrid materials with PPTA. Adsorption isotherm analyses indicated that Langmuir isotherm could be used to describe the adsorption process. Introduction of appropriate amount of PPTA could enhance the adsorption affinity of the MOF materials for Congo red, and the maximum adsorption capacity could reach as high as 1,053.41 mg/g while that of the MOF material without PPTA was 666.67 mg/g, indicating introduction of PPTA could change the microenvironment of the MOF materials and increase the adsorption sites, leading to high adsorption efficiency. Research limitations/implications The microstructure of MOF hybridized materials in detail is the further and future investigation. Practical implications This study will provide a method to prepare MOF materials with high efficiency to treat anionic dyes like Congo red from aqueous solution. Originality/value Owing to the special characteristics of PPTA and similar to carbon tube, PPTA was introduced into MOF material to increased corresponding water stability. Because of aromatic ring and amide group on the surface of PPTA, the adsorption efficiency of the hybridized MOF material with appropriate amount of PPTA was greatly enhanced.


2017 ◽  
Vol 46 (47) ◽  
pp. 16381-16386 ◽  
Author(s):  
Chengliang Xiao ◽  
Mark A. Silver ◽  
Shuao Wang

137Cs, 90Sr, 238U, 79Se, and 99Tc sequestrations from aqueous solution by metal–organic framework materials are summarized in this Frontier article.


2014 ◽  
Vol 26 (13) ◽  
pp. 133002 ◽  
Author(s):  
Sebastian Zuluaga ◽  
Pieremanuele Canepa ◽  
Kui Tan ◽  
Yves J Chabal ◽  
Timo Thonhauser

2005 ◽  
Vol 44 (12) ◽  
pp. 4148-4150 ◽  
Author(s):  
Yong-Tao Wang ◽  
Hai-Hua Fan ◽  
He-Zhou Wang ◽  
Xiao-Ming Chen

Sign in / Sign up

Export Citation Format

Share Document