Modification HKUST-1 as a catalyst for the reduction of 4-nitrophenol

2021 ◽  
Vol 10 (4) ◽  
pp. 27-38
Author(s):  
Ha Bui Thi Thanh ◽  
Duong Le Van ◽  
Duong Le Ngoc ◽  
Hung Ta Ngoc ◽  
Anh Nguyen Le ◽  
...  

HKUST-1 (MOF-199), a metal-organic framework material is synthesized from Cu(OH)2 and modified by Pt. The prepared catalysts were used to reduce 4-nitrophenol (4-NP) into 4-aminophenol (4-AP). Featured results of the catalysts by XRD, SEM, TEM, FTIR, BET, DTA/TGA... showed that metal modified process with reduced agent ethylene glycol had high efficiency, with modified yield up to 90 %. Under our experimental conditions, the catalysts based HKUST-1, containing Pt had high efficiency; conversion was greater than 93 % in reduced reaction of 4-NP. Thus, the catalyst sample contained 2% Pt was the most suitable for the reduction with conversion gained 99,4 % after 250s.


2021 ◽  
Vol 46 (11) ◽  
pp. 7772-7781 ◽  
Author(s):  
Shasha Dou ◽  
Wanyu Zhang ◽  
Yuting Yang ◽  
Shuqing Zhou ◽  
Xianfa Rao ◽  
...  




Author(s):  
Yutian Qin ◽  
Jun Guo ◽  
Meiting Zhao

AbstractBiomass is a green and producible source of energy and chemicals. Hence, developing high-efficiency catalysts for biomass utilization and transformation is urgently demanded. Metal–organic framework (MOF)-based solid acid materials have been considered as promising catalysts in biomass transformation. In this review, we first introduce the genre of Lewis acid and Brønsted acid sites commonly generated in MOFs or MOF-based composites. Then, the methods for the generation and adjustment of corresponding acid sites are overviewed. Next, the catalytic applications of MOF-based solid acid materials in various biomass transformation reactions are summarized and discussed. Furthermore, based on our personal insights, the challenges and outlook on the future development of MOF-based solid acid catalysts are provided. We hope that this review will provide an instructive roadmap for future research on MOFs and MOF-based composites for biomass transformation.





Nano Energy ◽  
2019 ◽  
Vol 58 ◽  
pp. 680-686 ◽  
Author(s):  
Zhengyu Bai ◽  
Shanshan Li ◽  
Jing Fu ◽  
Qing Zhang ◽  
Fangfang Chang ◽  
...  




2017 ◽  
Vol 23 (16) ◽  
pp. 3931-3937 ◽  
Author(s):  
Ming-Hua Xie ◽  
Rong Shao ◽  
Xin-Guo Xi ◽  
Gui-Hua Hou ◽  
Rong-Feng Guan ◽  
...  


Author(s):  
Lin Ren ◽  
Xudong Zhao ◽  
Baosheng Liu ◽  
Hongliang Huang

Abstract Rapid removal of radioactive strontium from nuclear wastewater is of great significance for environment safety and human health. This work reported the effective adsorption of strontium ion in a stable dual-group metal-organic framework, Zr6(OH)14(BDC-(COOH)2)4(SO4)0.75 (Zr-BDC-COOH-SO4), which contains strontium-chelating groups (-COOH and SO4) and strongly ionizable group (-COOH). Zr-BDC-COOH-SO4 exhibits very rapid adsorption kinetics (<5 min) and a maximum adsorption capacity of 67.5 mg g−1. The adsorption behaviors can be well evaluated by pseudo-second-order model and Langmuir isotherm model. Further investigations indicate that the adsorption of Sr2+ in Zr-BDC-COOH-SO4 would not be interfered by solution pH and adsorption temperature obviously. Feasible regeneration of the adsorbent was also demonstrated through a simple elution method. Mechanism investigation suggests that free -COOH contributes to the rapid adsorption based on electrostatic interaction while introduction of -SO4 can enhance the adsorption capacity largely. Thus, these results suggest that Zr-BDC-COOH-SO4 might be a potential candidate for Sr2+ removal and introducing dual groups is an effective strategy for designing high-efficiency adsorbents.





Sign in / Sign up

Export Citation Format

Share Document