scholarly journals Etching of ZnO films by a focused flow electrons with medium energies (up to 70 keV)

2021 ◽  
pp. 75-80
Author(s):  
Abubakar Ismailov ◽  
Arsen Muslimov

Consideration is given to the results of the study of etching processes ( 200 nm/min) of a ZnO film by a focused electron beam with medium energy (70 keV) under vacuum conditions of 910-5 Pa. It was shown that the construction of a model of the ZnO film etching during electron bombardment, taking into account the likely thermal desorption and electron-stimulated desorption, is not confirmed by calculations. A possible etching mechanism based on the radiolysis caused by Auger decay in near-surface layers of ZnO films is proposed.

2009 ◽  
Vol 35 (4) ◽  
pp. 309-311 ◽  
Author(s):  
N. V. Nikonorov ◽  
A. I. Sidorov ◽  
V. A. Tsekhomskii ◽  
A. V. Nashchekin ◽  
O. A. Usov ◽  
...  

Author(s):  
M. R. McCartney ◽  
J. K. Weiss ◽  
David J. Smith

It is well-known that electron-beam irradiation within the electron microscope can induce a variety of surface reactions. In the particular case of maximally-valent transition-metal oxides (TMO), which are susceptible to electron-stimulated desorption (ESD) of oxygen, it is apparent that the final reduced product depends, amongst other things, upon the ionicity of the original oxide, the energy and current density of the incident electrons, and the residual microscope vacuum. For example, when TMO are irradiated in a high-resolution electron microscope (HREM) at current densities of 5-50 A/cm2, epitaxial layers of the monoxide phase are found. In contrast, when these oxides are exposed to the extreme current density probe of an EM equipped with a field emission gun (FEG), the irradiated area has been reported to develop either holes or regions almost completely depleted of oxygen. ’ In this paper, we describe the responses of three TMO (WO3, V2O5 and TiO2) when irradiated by the focussed probe of a Philips 400ST FEG TEM, also equipped with a Gatan 666 Parallel Electron Energy Loss Spectrometer (P-EELS). The multi-channel analyzer of the spectrometer was modified to take advantage of the extremely rapid acquisition capabilities of the P-EELS to obtain time-resolved spectra of the oxides during the irradiation period. After irradiation, the specimens were immediately removed to a JEM-4000EX HREM for imaging of the damaged regions.


2003 ◽  
Vol 777 ◽  
Author(s):  
J.S. Romero ◽  
A.G. Fitzgerald

AbstractCopper migration is observed in the SEM in amorphous GeSe2/Cu thin films when an electron beam is focused in pulsed or continuous operation on the surface of these thin films. The phenomenon can be explained using a simple model in which the population of D- centers is considered to increase upon electron irradiation. The increase in the D- center population is envisaged as due to the breaking of bonds by the electron radiation and by the constant presence of negative charge in irradiated regions. Changes in copper concentration of 20%-30% have been obtained. Additionally we have observed the local crystallization of amorphous GeSe2/Cu thin films in the TEM when the samples were subjected to intense electron bombardment. The crystalline product has been identified as Berzelianite (Cu2Se).


2016 ◽  
Vol 12 (6) ◽  
pp. 4127-4133
Author(s):  
Nazmul Kayes ◽  
Jalil Miah ◽  
Md. Obaidullah ◽  
Akter Hossain ◽  
Mufazzal Hossain

Photodegradation of textile dyes in the presence of an aqueous suspension of semiconductor oxides has been of growing interest. Although this method of destruction of dyes is efficient, the main obstacle of applying this technique in the industry is the time and cost involving separation of oxides from an aqueous suspension. In this research, an attempted was made to develop ZnO films on a glass substrate by simple immobilization method for the adsorption and photodegradation of a typical dye, Remazol Red R (RRR) from aqueous solution. Adsorption and photodegradation of  RRR were performed in the presence of glass supported ZnO film. Photodegradation of the dye was carried out by varying different parameters such as the catalyst dosage, initial concentrations of RRR, and light sources. The percentage of adsorption as well as photodegradation increased with the amount of ZnO, reaches a maximum and then decreased. Maximum degradation has been found under solar light irradiation as compared to UV-light irradiation. Removal efficiency was also found to be influenced by the pre-sonication of ZnO suspension.


1996 ◽  
Vol 290-291 ◽  
pp. 80-83 ◽  
Author(s):  
S.B. Qadri ◽  
E.F. Skelton ◽  
P. Lubitz ◽  
N.V. Nguyen ◽  
H.R. Khan

1998 ◽  
Vol 319 (1-2) ◽  
pp. 39-43 ◽  
Author(s):  
Z Swiatek ◽  
J.T Bonarski ◽  
R Ciach ◽  
Z.T Kuznicki ◽  
I.M Fodchuk ◽  
...  

2017 ◽  
Author(s):  
Elena Sinyakova ◽  
Alexey Panin ◽  
Olga Perevalova ◽  
Marina Kazachenok ◽  
Yurii Ivanov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document