scholarly journals Induced by acoustic fieldsprocesses of structure formation in high-molecular media

2021 ◽  
Vol 9 (2) ◽  
pp. 128-143

The paper considers the mechanisms of destruction and synthesis of macromolecules, which can be stimulated by external acoustic fields in a two-phase, oil dispersed medium containing a large number of gas bubbles. It is assumed that the dynamics of these bub-bles depends on changes in the geometry of the flow and the excitation of sound vibra-tions in the flow. Particular attention is paid to the process of changing the density of a liquid due to the effect of an internal airlift in a liquid dispersed medium. Mechanically induced kinetic changes in macromolecules (destruction and synthesis of colloidal chains) can occur when bubbles collapse. These features can be used in oil processing and well logging to assess oil saturation of reservoirs.

2021 ◽  
Vol 79 ◽  
pp. 101892
Author(s):  
Hao Zhu ◽  
Alfred Rieder ◽  
Wolfgang Drahm ◽  
Yaoying Lin ◽  
Andreas Guettler ◽  
...  

2020 ◽  
Vol 121 (8) ◽  
pp. 791-796
Author(s):  
A. A. Popov ◽  
K. I. Lugovaya ◽  
E. N. Popova ◽  
V. V. Makarov ◽  
M. A. Zhilyakova

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 983 ◽  
Author(s):  
Pablo Druetta ◽  
Francesco Picchioni

Chemical Enhanced Oil Recovery (cEOR) processes comprise a number of techniques whichmodify the rock/fluid properties in order to mobilize the remaining oil. Among these, surfactantflooding is one of the most used and well-known processes; it is mainly used to decrease the interfacialenergy between the phases and thus lowering the residual oil saturation. A novel two-dimensionalflooding simulator is presented for a four-component (water, petroleum, surfactant, salt), two-phase(aqueous, oleous) model in porous media. The system is then solved using a second-order finitedifference method with the IMPEC (IMplicit Pressure and Explicit Concentration) scheme. The oilrecovery efficiency evidenced a strong dependency on the chemical component properties and itsphase behaviour. In order to accurately model the latter, the simulator uses and improves a simplifiedternary diagram, introducing the dependence of the partition coefficient on the salt concentration.Results showed that the surfactant partitioning between the phases is the most important parameterduring the EOR process. Moreover, the presence of salt affects this partitioning coefficient, modifyingconsiderably the sweeping efficiency. Therefore, the control of the salinity in the injection water isdeemed fundamental for the success of EOR operations with surfactants.


2020 ◽  
Vol 21 (5) ◽  
pp. 524
Author(s):  
Jamal Fannir ◽  
Irina Panfilova ◽  
Sébastien Leclerc ◽  
Didier Stemmelen

This study describes experimental research on two-phase flow displacement using Magnetic Resonance Imaging (MRI) techniques. The overall purpose of this investigation is to determine kinetics process of phase trapping during (water-oil) two-phase flow, the front deformation and the phases saturation propagation along a vertical model. In these water flooding experiments, the porous medium model consists of packed beads of polystyrene (0.4 mm < dp < 0.6 mm) or sand grains (0.02 mm < dp < 0.50 mm). In order to conduct high accuracy experiments, a Nuclear Magnetic Resonance (NMR) spectrometer operating at 14 T (corresponding to a 600 MHz 1H resonance) equipped with an imaging device was used. With this equipment we can measure and visualize the two-phase flow in a vertical model of porous medium under ambient conditions. The obtained results have shown that the oil saturation profile is strongly influenced by the material properties such as the phase wetting, the sample porosity and permeability as well as the injection rate. The influence of flow velocity on the residual oil saturation was also studied. The experimental results allow an essential understanding of immiscible fluid displacement in two different types of porous medium that differ from each other mainly by the effects of wettability.


1984 ◽  
Vol 148 ◽  
pp. 301-318 ◽  
Author(s):  
A. Biesheuvel ◽  
L. Van Wijngaarden

Equations of motion correct to the first order of the gas concentration by volume are derived for a dispersion of gas bubbles in liquid through systematic averaging of the equations on the microlevel. First, by ensemble averaging, an expression for the average stress tensor is obtained, which is non-isotropic although the local stress tensors in the constituent phases are isotropic (viscosity is neglected). Next, by applying the same technique, the momentum-flux tensor of the entire mixture is obtained. An equation expressing the fact that the average force on a massless bubble is zero leads to a third relation. Complemented with mass-conservation equations for liquid and gas, these equations appear to constitute a completely hyperbolic system, unlike the systems with complex characteristics found previously. The characteristic speeds are calculated and shown to be related to the propagation speeds of acoustic waves and concentration waves.


2017 ◽  
Vol 164 (13) ◽  
pp. E448-E459 ◽  
Author(s):  
Amir Taqieddin ◽  
Roya Nazari ◽  
Ljiljana Rajic ◽  
Akram Alshawabkeh

2016 ◽  
Vol 838-839 ◽  
pp. 294-301 ◽  
Author(s):  
Sergey Zherebtsov ◽  
Gennady Salishchev

Some features ofstructure, way of production and mechanical properties of titanium andtwo-phase titanium alloys with ultrafine-grained (UFG) microstructure werediscussed. Various methods of UFG structure formation was considered andoptimal conditions for attaining of a homogeneous microstructure with thesmallest grain size were determined. The kinetics of microstructure evolutionin titanium and two-phase titanium alloys during large (severe) plasticdeformation in a wide temperature interval and the mechanisms of ultrafinegrain formation were analyzed. The influence of grain size on static mechanicalproperties was determined. Significantly reduced temperatures of superplasticforming of the UFG conditions were shown. Some examples of practical applicationsof the UFG two-phase titanium alloys were discussed.


Author(s):  
M. R. Myers ◽  
H. M. Cave ◽  
S. P. Krumdieck

Two-phase intermittent gas and liquid slug flow in small diameter glass and plastic tubes was studied. Two distinct flow regimes and the transition phenomena were identified. A modified Hagen-Poiseuille relation was derived to describe the extremely high pressure drop due to the surface tension effects of pinned slug flow.


Sign in / Sign up

Export Citation Format

Share Document