scholarly journals Prediction of Remaining Useful Life of Wind Turbine Shaft Bearings Using Machine Learning

2021 ◽  
Vol 29 (5) ◽  
pp. 631-637
Author(s):  
Jinsiang Shaw ◽  
Bingjie Wu
Author(s):  
Boualem Merainani ◽  
Sofiane Laddada ◽  
Eric Bechhoefer ◽  
Mohamed Abdessamed Ait Chikh ◽  
Djamel Benazzouz

Wind Energy ◽  
2018 ◽  
Vol 22 (3) ◽  
pp. 360-375 ◽  
Author(s):  
James Carroll ◽  
Sofia Koukoura ◽  
Alasdair McDonald ◽  
Anastasis Charalambous ◽  
Stephan Weiss ◽  
...  

Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Zhiyuan Xie ◽  
Shichang Du ◽  
Jun Lv ◽  
Yafei Deng ◽  
Shiyao Jia

Remaining Useful Life (RUL) prediction is significant in indicating the health status of the sophisticated equipment, and it requires historical data because of its complexity. The number and complexity of such environmental parameters as vibration and temperature can cause non-linear states of data, making prediction tremendously difficult. Conventional machine learning models such as support vector machine (SVM), random forest, and back propagation neural network (BPNN), however, have limited capacity to predict accurately. In this paper, a two-phase deep-learning-model attention-convolutional forget-gate recurrent network (AM-ConvFGRNET) for RUL prediction is proposed. The first phase, forget-gate convolutional recurrent network (ConvFGRNET) is proposed based on a one-dimensional analog long short-term memory (LSTM), which removes all the gates except the forget gate and uses chrono-initialized biases. The second phase is the attention mechanism, which ensures the model to extract more specific features for generating an output, compensating the drawbacks of the FGRNET that it is a black box model and improving the interpretability. The performance and effectiveness of AM-ConvFGRNET for RUL prediction is validated by comparing it with other machine learning methods and deep learning methods on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset and a dataset of ball screw experiment.


2018 ◽  
Vol 116 ◽  
pp. 173-187 ◽  
Author(s):  
M.A. Djeziri ◽  
S. Benmoussa ◽  
R. Sanchez

2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Bhavana Valeti ◽  
Shamim N. Pakzad

Rotor blades are the most complex structural components in a wind turbine and are subjected to continuous cyclic loads of wind and self-weight variation. The structural maintenance operations in wind farms are moving towards condition based maintenance (CBM) to avoid premature failures. For this, damage prognosis with remaining useful life (RUL) estimation in wind turbine blades is necessary. Wind speed variation plays an important role influencing the loading and consequently the RUL of the structural components. This study investigates the effect of variable wind speed between the cutin and cut-out speeds of a typical wind farm on the RUL of a damage detected wind turbine blade as opposed to average wind speed assumption. RUL of wind turbine blades are estimated for different initial crack sizes using particle filtering method which forecasts the evolution of fatigue crack addressing the non-linearity and uncertainty in crack propagation. The stresses on a numerically simulated life size onshore wind turbine blade subjected to the above wind speed loading cases are used in computing the crack propagation observation data for particle filters. The effects of variable wind speed on the damage propagation rates and RUL in comparison to those at an average wind speed condition are studied and discussed.


2020 ◽  
Vol 152 ◽  
pp. 138-154 ◽  
Author(s):  
Yubin Pan ◽  
Rongjing Hong ◽  
Jie Chen ◽  
Weiwei Wu

Energies ◽  
2016 ◽  
Vol 10 (1) ◽  
pp. 32 ◽  
Author(s):  
Wei Teng ◽  
Xiaolong Zhang ◽  
Yibing Liu ◽  
Andrew Kusiak ◽  
Zhiyong Ma

Sign in / Sign up

Export Citation Format

Share Document