scholarly journals Identification of polyphosphate accumulating bacteria from pilot- and full scale nutrient removal activated sludges

1999 ◽  
Author(s):  
◽  
Blaise William Atkinson

General removal of phosphorus (P) from wastewater was introduced in Scandanavia in the late 1960's. At that time it was believed that P alone was limiting to algal growth and that the sole removal of P would solve the problem of eutrophication. However, we now know that both P and nitrogen (N) contribute to this deleterious effect and as such, much research has been conducted concerned with both the biological and chemical removal of these nutrients from sewage effluents. Enhanced biological phosphorus removal (EBPR), which is basically the biological accumulation of soluble P (as polyphosphate or poly-P) from the bulk liquid in excess of normal metabolic requirements, still tends to be sensitive to many external parameters and, as such, is subject to fluctuations. This makes it extremely difficult for wastewater treatment installations to achieve and maintain full compliance with strict discharge regulations. A more comprehensive understanding of the microbial community within the mixed liquor of a wastewater treatment system is therefore required which will ultimately assist in improving system design and performance. Chemical and civil engineers, when designing biological wastewater treatment systems, consider only the processes (biological or chemical) taking place within the reactor/s with little or no regard for the individual microbial species or the entire microbial community involved. Process design appears to be tackled empirically from a 'black box' approach; biological reactions or processes occurring within a system such as wastewater treatment are all lumped together and attributed to a single surrogate organism ie., the response of the surrogate to certain stimuli accounts for the total system response. This is similar to an analogy which Professor George Ekama (Dept of Civil Engineering, UCT), a leading scientist in wastewater treatment and process design, refers to where engineers, if, for example, are confronted with modelling the dynamics of carbon dioxide utilisation ofa forest, would recognise the accumulative system response and not give cognisance to each individual tree's contribution. It is true that if one had to consider every microbial species present in a highly organised community such as activated sludge, process models, designed to make quantitative and qualitative predictions as to the expected effluent quality from a particular design, would become increasingly complex and superfluous. It is evident from the countless accomplishments that engineers have succeeded, to a certain degree, in modelling wastewater treatment systems. One only has to consider the tremendous success of biological P (bio-P) removal and nitrification/denitrification processes at full-scale. However, there are limitations to this empirical approach and EBPR processes occasionally deteriorate in phosphate removal efficiency. In order to further optimise biological processes, whether they be organics oxidation, bio-P removal, nitrification or denitrification, biological community analyses will have to play a more significant role in design. The better microbial community structure and function is understood, the better the control and management of the system. With the advent of improved microbial identification and enumeration (to a certain extent) techniques (in situ), it was considered significant to investigate the mechanism ofbio-P removal and to elucidate which bacteria are actively responsible for this process. To this end, experimental work was conducted in two phases: \xAE laboratory, where samples of mixed liquor were obtained from a full-scale wastewater treatment facility exhibiting biological nutrient removal (BNR) characteristics and @ pilot plant, where an enhanced culture ofpolyphosphate accumulating organisms (PAO's) was developed and probed using molecular identification and enumeration techniques (as well as a cultivation-dependent approach). During phase \xAE of experimentat

2014 ◽  
Vol 18 (1) ◽  
pp. 50-64 ◽  
Author(s):  
Simon Jon McIlroy ◽  
Anna Starnawska ◽  
Piotr Starnawski ◽  
Aaron Marc Saunders ◽  
Marta Nierychlo ◽  
...  

2012 ◽  
Vol 7 (1) ◽  
Author(s):  
S. S. Fatima ◽  
S. Jamal Khan

In this study, the performance of wastewater treatment plant located at sector I-9 Islamabad, Pakistan, was evaluated. This full scale domestic wastewater treatment plant is based on conventional activated sludge process. The parameters which were monitored regularly included total suspended solids (TSS), mixed liquor suspended solids (MLSS), mixed liquor volatile suspended solids (MLVSS), biological oxygen demand (BOD), and chemical oxygen demand (COD). It was found that the biological degradation efficiency of the plant was below the desired levels in terms of COD and BOD. Also the plant operators were not maintaining consistent sludge retention time (SRT). Abrupt discharge of MLSS through the Surplus Activated sludge (SAS) pump was the main reason for the low MLSS in the aeration tank and consequently low treatment performance. In this study the SRT was optimized based on desired MLSS concentration between 3,000–3,500 mg/L and required performance in terms of BOD, COD and TSS. This study revealed that SRT is a very important operational parameter and its knowledge and correct implementation by the plant operators should be mandatory.


2013 ◽  
Vol 67 (11) ◽  
pp. 2519-2526 ◽  
Author(s):  
A. T. Mielczarek ◽  
A. M. Saunders ◽  
P. Larsen ◽  
M. Albertsen ◽  
M. Stevenson ◽  
...  

Since 2006 more than 50 Danish full-scale wastewater treatment plants with nutrient removal have been investigated in a project called ‘The Microbial Database for Danish Activated Sludge Wastewater Treatment Plants with Nutrient Removal (MiDas-DK)’. Comprehensive sets of samples have been collected, analyzed and associated with extensive operational data from the plants. The community composition was analyzed by quantitative fluorescence in situ hybridization (FISH) supported by 16S rRNA amplicon sequencing and deep metagenomics. MiDas-DK has been a powerful tool to study the complex activated sludge ecosystems, and, besides many scientific articles on fundamental issues on mixed communities encompassing nitrifiers, denitrifiers, bacteria involved in P-removal, hydrolysis, fermentation, and foaming, the project has provided results that can be used to optimize the operation of full-scale plants and carry out trouble-shooting. A core microbial community has been defined comprising the majority of microorganisms present in the plants. Time series have been established, providing an overview of temporal variations in the different plants. Interestingly, although most microorganisms were present in all plants, there seemed to be plant-specific factors that controlled the population composition thereby keeping it unique in each plant over time. Statistical analyses of FISH and operational data revealed some correlations, but less than expected. MiDas-DK (www.midasdk.dk) will continue over the next years and we hope the approach can inspire others to make similar projects in other parts of the world to get a more comprehensive understanding of microbial communities in wastewater engineering.


2012 ◽  
Vol 65 (4) ◽  
pp. 737-742 ◽  
Author(s):  
V. Wei ◽  
M. Elektorowicz ◽  
J. A. Oleszkiewicz

Thousands of sparsely populated communities scatter in the remote areas of northern Canada. It is economically preferable to adopt the decentralized systems to treat the domestic wastewater because of the vast human inhabitant distribution and cold climatic conditions. Electro-technologies such as electrofiltration, elctrofloatation, electrocoagulation and electrokinetic separation have been applied in water and conventional wastewater treatment for decades due to the minimum requirements of chemicals as well as ease of operation. The membrane bioreactor (MBR) is gaining popularity in recent years as an alternative water/wastewater treatment technology. However, few studies have been conducted to hyphenate these two technologies. The purpose of this work is to design a novel electrically enhanced membrane bioreactor (EMBR) as an alternative decentralized wastewater treatment system with improved nutrient removal and reduced membrane fouling. Two identical submerged membranes (GE ZW-1 hollow fiber module) were used for the experiment, with one as a control. The EMBR and control MBR were operated for 4 months at room temperature (20 ± 2 °C) with synthetic feed and 2 months at 10 °C with real sewage. The following results were observed: (1) the transmembrane pressure (TMP) increased significantly more slowly in the EMBR and the interval between the cleaning cycles of the EMBR increased at least twice; (2) the dissolved chemical oxygen demand (COD) or total organic carbon (TOC) in the EMBR biomass was reduced from 30 to 51%, correspondingly, concentrations of the extracellular polymeric substances (EPS), the major suspicious membrane foulants, decreased by 26–46% in the EMBR; (3) both control and EMBR removed >99% of ammonium-N and >95% of dissolved COD, in addition, ortho-P removal in the EMBR was >90%, compared with 47–61% of ortho-P removal in the MBR; and (4) the advantage of the EMBR over the conventional MBR in terms of membrane fouling retardation and phosphorus removal was further demonstrated at an operating temperature of 10 °C when fed with real sewage. The EMBR system has the potential for highly automated control and minimal maintenance, which is particularly suitable for remote northern applications.


Sign in / Sign up

Export Citation Format

Share Document