Suggestion of a New Writer's Guideline to Reduce Human Errors Found in the Emergency Operation Procedures of a Nuclear Power Plant

2010 ◽  
Vol 29 (1) ◽  
pp. 129-138 ◽  
Author(s):  
Ladislav Vesely ◽  
Vaclav Dostal

Accident at Fukushima Dai-Ichi nuclear power plant significantly affected the nuclear industry at time when everybody was expecting the so called nuclear renaissance. There is no question that the accident has at least slowed it down. Research into this accident is taking place all over the world. In this paper we present the findings of research on Fukushima nuclear power plant accident in relation to the Czech Republic. The paper focuses on the analysis of human performance during the accident. Lessons learned from the accident and main human errors are presented. First the brief factors affecting the human performance are discussed. They are followed by the short description of activities on units 1–3. The key human errors in the accident mitigation are then identified. On unit 1 the main error is wrong understanding and operation of isolation condenser. On unit 2 the main errors were unsuccessful depressurization with subsequent delay of coolant injection. On unit 3 the main error is the shutdown of high pressure cooling injection system without first confirming that different means of cooling are available. These errors lead to fuel damage. On unit 1 the fuel damage was probably impossible to prevent, however on unit 2 and 3 it could be probably prevented. The lessons learned for the Czech Republic were presented. They can be summarizes as follows: be sure that plant personnel can and knows how to monitor and operate the crucial plant components, be sure that the procedures on how to fulfill the critical safety functions are available in the symptomatic manner for situations when there is no power available at the plant, train personnel for these situations and have sufficient human resource available for these situations.


1985 ◽  
Vol 1 (S1) ◽  
pp. 401-404
Author(s):  
Donald Reid

At 0400 hours on Wednesday, March 28, 1979, an extremely small and initially thought unimportant malfunction occurred at the nuclear power plant at Three Mile Island (TMI). Within a short period of time, that malfunction would turn into an event of momentous impact with repercussions felt over most of the world. The events of that malfunction would cause TMI to be labelled as the worst commercial nuclear incident in history and transform it into the nuclear test tube of the universe. What really happened at Three Mile Island? Thirty-six seconds after 0400 hours, several water pumps stopped functioning in the unit 2 nuclear power plant. In the minutes, hours and days that followed, a series of events—compounded by equipment failure, inappropriate procedures and human errors—escalated into the worst crisis yet experienced by the nation's nuclear power industry. This resulted in the loss of reactor coolant, overheating of the core, damage to the fuel (but probably no melting) and release outside the plant of radioactive gases. Hydrogen has was formed, primarily by the reaction between the zirconium casing that holds the radioactive fuel and steam. There, however, was no danger of the bubble inside the reactor vessel exploding, because of the absence of oxygen within the reactor.


Author(s):  
Kenji Mashio ◽  
Kodo Ito

Integrated process of human error management in human factors engineering (HFE) process provides a systematic direction for the design countermeasures development to prevent potential human errors. The process analyzes performance influence factors (PIFs) for crew failure modes (CFMs) and human failure events (HFEvs) in human reliability analysis (HRA). This paper provides applications of the process to the event evaluation for nuclear power plant design, especially PWR. In this application, the HRA/HFE integrated process had specified further detail for PIF attributes which had not been obtained in HRA, and showed further investigations to treat how operators induced their human errors through their cognitive task process in their work environment. This application showed effectiveness of the process in order to provide design countermeasures for preventing potential human errors occurrence based on the extensive PIFs and their error forcing context in HRA.


2017 ◽  
Vol 153 ◽  
pp. 05016
Author(s):  
Gilles Genard ◽  
Romain Portal ◽  
Virginie Bouchat ◽  
Serge Vanderperre

Sign in / Sign up

Export Citation Format

Share Document