scholarly journals Diagnosis of the Induction Machine Using Advanced Signal Processing Methods

2018 ◽  
Vol 3 (3) ◽  
pp. 143-150
Author(s):  
Abdelghani CHAHMI

This work is a part of the thematic of monitoring and fault diagnosis of the squirrel cage three-phase induction machine. The choice of this type of machine is justified by the growing success it has exhibited, mainly, in the electric drives with variable speed. Signal based detection methods are presented is validated in simulation. The proposed diagnosis approach requires only little experimental data, and more importantly it provides efficient simulation tools that allow characterizing faulty behavior.In this study, the proposed approach considers the value of rotor resistance as fixed for condition monitoring. This value in the diagnostic tools which one uses is not fixed contrary to the classical approaches of control of machine.

Author(s):  
Mihai IORDACHE ◽  
Sorin DELEANU ◽  
Neculai GALAN

The three-phase induction machine mathematical model presented in the paper, is adequate for applying to the deep rotor bars case. The rotor resistance R’r(r), respectively its leakage inductivity L’r(r), depend upon the rotor currents’ frequency fr because of the skin effect. Following the previous considerations, one developed slip dependent analytical expressions of the rotor circuit resistance R’r(s), respectively rotor circuit leakage reactance L’r (s). A modified space phasor based mathematical model of the deep bar induction motor is tested through simulations to assess the motor’s characteristics. The results are in accordance with the literature.


2019 ◽  
Vol 8 (3) ◽  
pp. 1413-1418

This article proposed a method to detect the faults in multi-winding induction motor using Discrete Wavelet transform combined with Deep Belief Neural Network (DBNN). This technique relies on the instantaneous reactive power signal decomposition, from which detail coefficients and wavelet approximations are extracted which are termed as features. In order to obtain a robust diagnosis, this article proposed to classify the feature vectors extracted from DWT analysis of power signals using DBNN (Deep Belief Neural Network) to distinguish the motors state. Subsequently, in order to validate the proposed approach, a three phase squirrel cage induction machine is simulated under MATLAB software. To check the effectiveness of the proposed method of fault diagnosis the motor is simulated in different simulation environments like time varying load and constant load condition. Promising results were obtained and the performance of DBNN i.e. 99.75% accuracy. The proposed algorithm is compared with various other state-of-art methods and the comparison proves its robustness in diagnosing the fault in motors.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 320
Author(s):  
Robert R. Gomes ◽  
Luiz F. Pugliese ◽  
Waner W. A. G. Silva ◽  
Clodualdo V. Sousa ◽  
Guilherme M. Rezende ◽  
...  

Induction machines are widely used in the industry due to their many advantages compared to other industrial machines. This article presents the study and implementation of speed control applied to a Three-phase Induction Machine (MIT) of the squirrel cage type. The induction motor was modeled using the rotor flux in the synchronous reference to design Proportional-Integral (PI) type controllers for the current and velocity control loops. It is the objective of the article also to present in detail the development of converter hardware that comprises the stages of power, acquisition, and conditioning of engine signals. The system was simulated using computational tools and validated using a prototype designed, constructed, and commissioned.


2013 ◽  
Vol 291-294 ◽  
pp. 2549-2552
Author(s):  
Qiao Shan Wu

According to the three-phase squirrel-cage asynchronous motor rotor broken bar fault, presented with parameters identification method of asynchronous motor parameter identification to monitoring and diagnosis of rotor resistance variation of rotor bar breaking principle. Choose a three-phase squirrel-cage asynchronous motor in three working points of experiments, results show that the method is correct and feasible. This method is based on the three-phase squirrel-cage asynchronous motor steady state model parameter equation, using the method of least squares identification parameters, and consider the effects of temperature on the parameters, by the parameter variation in diagnosis of broken rotor bar fault. Advantages of simple scientific method, this method can also be used in conjunction with other methods and, on the three-phase squirrel-cage asynchronous motor rotor has no fault diagnosis.


Author(s):  
V. S. Malyar ◽  
O. Ye. Hamola ◽  
V. S. Maday ◽  
I. I. Vasylchyshyn

Purpose. Development of methods and algorithms for calculation of starting modes of the induction motors with the squirrel-cage rotor. Methodology. Mathematical modelling of starting modes of asynchronous electric drives in various coordinate systems with the use of numerical methods for solving boundary problems for systems of differential equations and nonlinear systems of final equations and calculation with their use of static characteristics. Results. Methods and algorithms for numerical analysis of the starting modes of asynchronous electric drive have been developed, which make it possible to calculate the static characteristics and transients in fixed three-phase and orthogonal two-phase coordinate systems. Academic novelty. Known in the literature methods of calculation of starting modes have in their basis classical equivalent circuits with different approximate methods of calculating the parameters taking into account the saturation of a magnetic core and current displacement in a rotor winding. This approach requires a special solution of the adequacy problem for each problem. The methods described in the article for the saturation accounting use real magnetization characteristics of the main magnetic flux and leakage fluxes separately, and the skin effect phenomenon is taken into account by representing the squirrel-cage rotor winding as multilayer. Such mathematical model of the motor is universal and makes it possible to take into account the saturation and current displacement in any dynamic mode, including the start-up process. Mathematical models developed on the basis of the proposed methods provide the adequacy of results with a minimum amount of calculations and make it possible to perform optimization calculations. Practical value. Created on the basis of developed algorithms calculation programs allow to carry out with high reliability calculation of starting modes both in three-phase and two-phase axes of coordinates that gives the chance to analyze not only symmetric, but also asymmetric modes and to predict special features of functioning of system of the electric drive in the set technological conditions of operation and to form requirements to development and adjustment of starting systems with the purpose of maintenance of power effective and reliable operation of system of asynchronous electric drives.


Sign in / Sign up

Export Citation Format

Share Document