scholarly journals Improvement of the method of purification of exhaust gases in the production of asphalt concrete

The article analyzes the air protection measures of LLP «Asphaltbeton» demonstrated the disadvantages of the efficacy of the purification system for calculating waste emissions and scattering of atmospheric contaminants, as the concentration of sludge substances (dust) is 2.5 times more than 1.206 mg/m3, and nitrogen, the concentration of carbon dioxide and the amount of hydrocarbons in the sanitary dimensions and according to it. The effectiveness of purification of exhaust gas from the asphalt mixer D-645 with the CF-10 chain filter allowed the choice of more systems. The calculations in the FTS-10 showed that it is possible to efficiently clean gas emissions from 95% to 95% by removing the waste from gaseous waste. When preparing asphalt concrete, harmful substances such as dust, oxides, nitrogen and carbon, hydrocarbon are distributed. Therefore, the permissible threshold for all hazardous waste recycling sites has been identified (DHM, mg/m3), which prevents the dust, steam, gas workers from exposing the flu or fluid to the workplace while maintaining a working life of less than 8 hours per day.

Author(s):  
Anagi M. Balachandra ◽  
Nastaran Abdol ◽  
A.G.N.D. Darsanasiri ◽  
Kaize Zhu ◽  
Parviz Soroushian ◽  
...  

2020 ◽  
Vol 19 (4) ◽  
pp. 305-310
Author(s):  
G. M. Kuharonak ◽  
D. V. Kapskiy ◽  
V. I. Berezun

The purpose of this work is to consider the requirements for emissions of harmful substances of diesel engines by selecting design and adjustment parameters that determine the organization of the workflow, and the exhaust gas cleaning system, taking into account the reduction of fuel consumption. Design elements and geometric characteristics of structures for a turbocharged diesel engine of Д-245 series produced by JSC HMC Minsk Motor Plant (4ЧН11/12.5) with a capacity of 90 kW equipped with an electronically controlled battery fuel injection have been developed: exhaust gas recirculation along the high pressure circuit, shape and dimensions of the combustion chamber, the number and angular arrangement of the nozzle openings in a nozzle atomizer, and inlet channels of the cylinder head. Methods for organizing a workflow are proposed that take into account the shape of the indicator diagrams and affect the emissions of nitrogen oxides and dispersed particles differently. Their implementation allows us to determine the boundary ranges of changes in the control parameters of the fuel supply and exhaust gas recirculation systems when determining the area of minimizing the specific effective fuel consumption and the range of studies for the environmental performance of a diesel engine. The paper presents results of the study on the ways to meet  the requirements for emissions of harmful substances, obtained by considering options for the organization of working processes, taking into account the reduction in specific effective fuel consumption, changes in the average temperature of the exhaust gases and diesel equipment. To evaluate these methods, the following indicators have been identified: changes in specific fuel consumption and average temperature of the toxicity cycle relative to the base cycle, the necessary degree of conversion of the purification system for dispersed particles and NOx. Recommendations are given on choosing a diesel engine to meet Stage 4 emission standards for nitrogen oxides and dispersed particles.


2019 ◽  
pp. 20-24
Author(s):  
Максим Андрійович Пирисунько ◽  
Роман Миколайович Радченко ◽  
Андрій Адольфович Андреєв ◽  
Вікторія Сергіївна Корнієнко

The problem of air basin pollution of the World Ocean with harmful emissions from the exhaust gases of marine diesel engines is primarily associated with the creation of highly efficient technologies for the neutralization of nitrogen oxides NOx on exhaust gases from a diesel engine. Emissions of harmful substances from the combustion of marine fuels are limited by international atmospheric protection programs and the requirements of the International Maritime Organization (IMO). The requirements relate to almost all groups of harmful emissions in marine engines and the more stringent of them are primarily related to nitrogen oxides NOx and sulfur oxides SOx. To reduce harmful emissions from exhaust gases into the environment, scientists and world engine leaders use and suggest various methods for reducing the content of harmful substances in exhaust gases. The implementation of new standards in the areas of further improvement of the working process, the use of alternative fuels, fuel, and air additives, as well as selective catalytic reduction systems do not preclude further development of scientific research in the field of exhaust gas cleaning. One of the promising ways in environmentalizing marine internal combustion engines is the neutralization of harmful substances in exhaust gases through particular gas recirculation (EGR-technology). However, the use of such techniques conflicts with the engine's energy efficiency. In the work presented, the scheme-design solution of the exhaust gas recirculation system with using the heat of recirculation gases by an ejector refrigeration machine for cooling the air at the intake of ship's main engine is proposed. The effect of using the heat of recirculation gases for cooling the air at the intake of the engine is analyzed taking into account the changing climatic conditions for a particular vessel's route line. It is shown that the use of an ejector refrigeration machine reduces the air temperature at the entrance of the main engine by 5…15 ° С, which reduces the specific fuel consumption. This reduces emissions of harmful substances when the engine is running with recirculation of gases.


2018 ◽  
Vol 6 (2) ◽  
pp. 2055-2062 ◽  
Author(s):  
Kaize Zhu ◽  
Faris Matalkah ◽  
Salina Ramli ◽  
Brian Durkin ◽  
Parviz Soroushian ◽  
...  

2015 ◽  
Vol 55 (3) ◽  
pp. 559-563 ◽  
Author(s):  
Gustavo León ◽  
Rodrigo Cantú ◽  
Juan A. Villarreal ◽  
Osvaldo M. Micheloud ◽  
Alejandro Montesinos-Castellanos

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Kalyan Annamalai ◽  
Siva Sankar Thanapal ◽  
Devesh Ranjan

Carbon dioxide (CO2) is one of the greenhouse gases which cause global warming. The amount of fossil fuels consumed to meet the demands in the areas of power and transportation is projected to increase in the upcoming years. Depending on carbon content, each power plant fuel has its own potential to produce carbon dioxide. Similarly, the humans consume food containing carbohydrates (CH), fat, and protein which emit CO2 due to metabolism. The biology literature uses respiratory quotient (RQ), defined as the ratio of CO2 moles exhausted per mole of O2 consumed within the body, to estimate CO2 loading in the blood stream and CO2 in nasal exhaust. Here, we apply that principle in the field of combustion to relate the RQ to CO2 emitted in tons per GJ of energy released when a fuel is combusted. The RQ value of a fuel can be determined either from fuel chemical formulae (from ultimate analyses for most liquid and solid fuels of known composition) or from exhaust gas analyses. RQ ranges from 0.5 for methane (CH4) to 1 for pure carbon. Based on the results obtained, the lesser the value of “RQ” of a fuel, the lower its global warming potential. This methodology can be further extended for an “online instantaneous measurement of CO2” in automobiles based on actual fuel use irrespective of fuel composition.


2021 ◽  
Vol 940 (1) ◽  
pp. 012029
Author(s):  
M A Wuri ◽  
A Pertiwiningrum ◽  
R Budiarto ◽  
M Gozan ◽  
A W Harto

Abstract The utilization of the recycling of biomass waste for carbon dioxide (CO2) adsorption in biogas is still rare. Even though the experiments on the biogas purification still using synthetic biogas. This paper investigated the recycling of biomass waste, sugarcane bagasse for biogas purification. The conversion of biomass into biochar was claimed to expand the surface area of its pores for capturing CO2 in biogas. Five treatments of adsorbents used in this study, 100% volume of zeolite or biochar, 75% volume of zeolite and 25% biochar, 50% volume of zeolite and biochar, 25% volume of zeolite and 25% volume of zeolite, and 25% volume of biochar. The difference of volume treatment in adsorbents affected methane (CH4) and CO2 composition of biogas. Biogas purification by adsorption was conducted at 5-7 bar pressure range and room temperature. Biogas before and after purification were tested of CH4 and CO2 composition by gas chromatography. A significant reduction in CO2 was shown when 50% volume of zeolite was replaced by biochar. The highest in CO2 reduction showed by the composition of 50% sugarcane bagasse-based biochar and 50% natural zeolite. The CO2 decreases did not accompany by the CH4 increases because mesopore-sized still dominated the adsorbents’ pore size.


Sign in / Sign up

Export Citation Format

Share Document