geopolymer binder
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 60)

H-INDEX

13
(FIVE YEARS 3)

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4373
Author(s):  
Mohd Salahuddin Mohd Basri ◽  
Faizal Mustapha ◽  
Norkhairunnisa Mazlan ◽  
Mohd Ridzwan Ishak

Compressive strength is an important property in construction material, particularly for thermal insulation purposes. Although the insulation materials possess high fire-retardant characteristics, their mechanical properties are relatively poor. Moreover, research on the correlation between fire-retardant and compressive strength of rice husk ash (RHA)-based geopolymer binder (GB) is rather limited. In addition, previous studies on RHA-based GB used the less efficient one-factor-at-a-time (OFAT) approach. In understanding the optimum value and significant effect of factors on the compressive strength, it was deemed necessary to employ statistical analysis and a regression coefficient model (mathematical model). The objective of the study is to determine the effect of different material behavior, namely brittle and ductile, on the compressive strength properties and the optimum material formulation that can satisfy both compressive strength and fire-retardant properties. The factors chosen for this study were the rice husk ash/activated alkaline solution (RHA/AA) ratio and the sodium hydroxide (NaOH) concentration. Compressive strength and fire-retardant tests were conducted as part of the experiments, which were designed and analyzed using the response surface methodology (RSM). The microstructure of geopolymer samples was investigated using a scanning electron microscope (SEM). Results showed that RHA/AA ratio was highly significant (p < 0.000) followed by NaOH concentration (p < 0.024). When the RHA/AA ratio was at 0.7 to 0.8 and the NaOH concentration was between 12 and 14 M, high compressive strength above 28 MPa was recorded. Optimum compressive strength of approximately 47 MPa was achieved when the RHA/AA ratio and NaOH concentration were 0.85 and 14 M, respectively. Brittle samples with low Si/Al ratio of 88.95 were high in compressive strength, which is 33.55 MPa, and showed a high degree of geopolymerization. Inversely, ductile samples showed low compressive strength and degree of geopolymerization. Water content within the geopolymer binder had a major effect on its fire-retardant properties. Semi-ductile GB showed the best fire-retardant properties, followed by semi-brittle and brittle GB. Using RHA as an aluminosilicate source has proven to be a promising alternative.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shengnian Wang ◽  
Jun Su ◽  
Zhijian Wu ◽  
Wei Ma ◽  
Yue Li ◽  
...  

Geopolymer binders are adjudged as the latest wave of sustainable alkali-activated materials for soil stabilization due to their excellent bonding properties. This study applied metakaolin as a precursor for synthesizing the geopolymer binder by employing the mixture of quicklime and sodium bicarbonate as an alkali activator. The optimal mass mixing ratio of the alkali activator, metakaolin, and silty clay was determined by unconfined compression tests. The stabilization mechanisms of the geopolymer binder were measured by x-ray diffraction and Fourier transform infrared spectroscopy. The microstructural characteristics of the geopolymer-stabilized silty clay were observed by scanning electron microscopy with an energy dispersive x-ray spectroscopy and mercury intrusion porosimetry test for understanding the strengthening mechanism of the silty clay after the treatment. Results indicate that the optimal mass mixing ratio of the alkali activator, metakaolin, and silty clay is 1:2:17, and the unconfined compressive strength of the geopolymer-stabilized silty clay reaches the maximum value of 0.85 MPa with adding 15 wt% of the geopolymer binder. Diffraction patterns show an insufficient polymerization of the geopolymer binder in the silty clay in the early days but a rapid synthesis of aluminosilicate gels after that. The new asymmetrical stretching vibration peaks signified the formation of aluminosilicate networks and are responsible for the strength improvement of the silty clay. Microstructural analyses further confirm the formation of aluminosilicate gels and their positive impacts on the structure of the silty clay over curing age.


2021 ◽  
Vol 10 (4) ◽  
pp. 225-236
Author(s):  
Nihat Kabay ◽  
Mumin Mert ◽  
Nausad Miyan ◽  
Tarik Omur

Natural rocks of magmatic origin are alternative precursors in alkali-activated materials and provide opportunities in the search for more environmentally friendly binders compared to portland cement. The pumice is one of these rocks and its amorphous structure and chemical composition make it one of the candidates as a precursor in producing geopolymer binder when finely ground. Since the majority of the pumice reserves are located in Turkey increases its potential utilization in this area, even more. This paper evaluates the physical, mechanical, and microstructural properties of geopolymer pastes and mortars manufactured with pumice powder (PP) and ground granulated blast furnace slag (BFS) with the activating agents sodium hydroxide (NaOH), potassium hydroxide (KOH), and sodium silicate (SS) solution. The experimental results showed that the compressive strength of the geopolymer pastes was mainly affected by the activator concentration and the PP ratio, rather than the activator type, for single activator mixes. However, the incorporation of SS changed this trend as the KOH and SS combination resulted in higher compressive strength compared to the NaOH and SS. The gradual increase of the PP ratio in the mix design decreased the density and thermal conductivity, on the other hand, increased the water absorption values of the geopolymer mortars. However, the physical properties were insignificantly changed in geopolymer mortars incorporating 60, 70, and 80% of PP in the binder.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6534
Author(s):  
Rabii Hattaf ◽  
Mohamed Benchikhi ◽  
Abdessamad Azzouzi ◽  
Rachida El Ouatib ◽  
Moussa Gomina ◽  
...  

In order to avoid potential environmental pollution from geopolymer-based material wastes, this work investigated the feasibility of using these materials as alternative raw materials in the preparation of cement clinker. The geopolymer binders and mortars were used as substitutes for natural mineral clays since they are rich in silica and alumina. Simulated geopolymer wastes were prepared by the activation of metakaolin or fly ash by an alkaline silicate solution. The cement-clinkers fired at 1450 °C for 1h were characterized by XRD, XRF, SEM-EDS, and a free lime (CaOf) content test. The anhydrous clinker mineral phases C3S (Ca3SiO5), C2S (Ca2SiO4), C3A (Ca3Al2O6), and C4AF (Ca4Al2Fe2O10) were well-crystallized in all investigated formulations. The free lime was lower than 1.3 wt% in all elaborated clinkers, which indicates a high degree of clinkerization. The results demonstrate that geopolymer binder and mortar materials are suitable substitutes for natural mineral clay incement clinker preparation.


2021 ◽  
Vol 9 (6) ◽  
pp. 1698-1716
Author(s):  
Ni Kadek Astariani ◽  
I Made Alit Karyawan Salain ◽  
I Nyoman Sutarja ◽  
Ida Bagus Rai Widiarsa

Sign in / Sign up

Export Citation Format

Share Document