scholarly journals Design and Analysis of Printed Monopole Antenna With and Without CSRR in the Ground Plane for GSM 900 and Wi-Fi

2021 ◽  
Author(s):  
Prasanna G. Paga ◽  
◽  
H. C. Nagaraj ◽  
K. S. Shashidhara ◽  
Veerendra Dakulagi ◽  
...  
2020 ◽  
Vol 70 (2) ◽  
pp. 175-182
Author(s):  
Prithish Chand ◽  
Amar Dattatray Chaudhari ◽  
Rahul Keley ◽  
Kamala Prasan Ray

In this paper, a simple, low profile compact printed monopole antenna has been proposed for satellite based automatic identification system (SB-AIS). The design consists of a printed monopole, which has been meandered to achieve optimum size reduction. The detailed investigation in terms of bending of the arms of monopole, width of the patch and dimensions of the ground plane on the resonance frequency and input impedance is presented. The antenna is matched to a typical 50 Ω coaxial line without any requirement of external matching structures. The prototype of the antenna is fabricated and tested at an operating frequency of 161 MHz for SB-AIS, with compact size of 44.5 . 17 cm2. The measured results show that the antenna has a bandwidth of 15 MHz (9.3 per cent), gain of 1.87 dBi and beam-width of 82° in the elevation and omnidirectional in azimuthal plane. The size reduction is 53.8 per cent as compared to a linear printed monopole antenna.


2019 ◽  
Vol 4 (2019) ◽  
pp. 50-54
Author(s):  
Zaw Myo Lwin ◽  
Thae Su Aye

This paper presents a rectangular-shaped printed monopole antenna with circular polarization for Wi-Fi (2.4–2.484 GHz) and WiMAX (3.3-3.7 GHz) bands. The antenna relies on asymmetric arrangement of the patch with respect to the microstrip feed, in order to generate circular polarization. Dual-band (Wi-Fi and WiMAX) operation is enabled by inserting a slit in the corner of the ground plane. Simulation results show a bandwidth increase of 15.9% (2.2–2.58 GHz) for Wi-Fi, and of 24.16% (3.13–3.99 GHz) for WiMAX applications. Furthermore, beamwidths at the axial ratio of 3 dB equal 48˚ and 51˚ for the x-z plane and y-z planes, respectively.


2021 ◽  
Vol 72 (4) ◽  
pp. 268-272
Author(s):  
Susmita Bala ◽  
P. Soni Reddy ◽  
Sushanta Sarkar ◽  
Partha Pratim Sarkar

Abstract A wideband printed monopole antenna with two rejection bands is proposed in this article. The antenna provides a wideband from 5.4 GHz to 17.2 GHz with two rejection bands covering 6.9 to 7.4 GHz and 8.3 to 9.2 GHz with two peak notch frequencies of 7.2 GHz and 8.6 GHz respectively. Tested peak gain at two peak notch frequencies of 7.2 GHz and 8.6 GHz are 2.5 dBi and −1.5 dBi respectively. These two rejection bands are effectively used to avoid undesired intrusion from the C band and the X band. The lower rejection band has been realized by cutting an open ring circular slot on the metal patch whereas U like slot has been inserted on the ground plane just beneath the feed line to achieve the upper rejection band. Simulated and tested S 11 parameter, gain, radiation efficiency, E-H radiation patterns, and surface currents of the antenna are presented here. The antenna uses small dimensions and it is very simple to design. The proposed antenna confirms that it is useful for short-range and fast data communication systems.


Author(s):  
Abdul Wajid ◽  
Muhammad Irshad Khan ◽  
Muhammad Anab ◽  
Muhammad Irfan Khattak

In this paper, a half-circular disc PMA (Printed Monopole Antenna) for SWB (Super Wide Band) applications is presented. The dimensions of the substrate is 40x40x1.7mm. The antenna is printed on Rogers RT5880 dielectric material. The antenna VSWR (Voltage Standing Wave Ratio) has less than 2 between 2.7 and 50 GHz. The antenna S11 has less than -10 between 2.7 and 50GHz. The antenna has a maximum gain of 12.4dBi. The BW (Bandwidth) of the proposed antenna is about 47.3 GHz. The antenna covered the WiMAX ((Worldwide Interoperability for Microwave Access), WLAN (Wireless Local Area Network), X band, Ka band, Ku band, 4G band, and the band of 5G (Fifth Generation) at the same time with nice gain and radiation efficiency. The radiator of the proposed antenna designs from a half-circular disc, rectangle, and triangle. The antenna has a partial ground plane. Three slots are etched in the ground plane for better impedance matching, two are circular slots and one is the rectangular slot. The antenna design is simulated in CST microwave studio 2016. The antenna has good radiation efficiency, other parameters such as VSWR S11, gain, and radiation pattern are discussed in detail.


Frequenz ◽  
2016 ◽  
Vol 70 (11-12) ◽  
Author(s):  
Mohammad Jakir Hossain ◽  
Mohammad Rashed Iqbal Faruque ◽  
Md. Moinul Islam ◽  
Mohammad Tariqul Islam ◽  
Md. Atiqur Rahman

AbstractIn this paper, a novel bird face microstrip printed monopole ultra-wideband (UWB) antenna is investigated. The proposed compact antenna consists of a ring-shaped with additional slot and slotted ground plane on FR4 material. The overall electrical dimension of the proposed antenna is 0.25 λ×0.36 λ×0.016 λ and is energized by microstrip feed line. The Computer Simulation Technology (CST) and the High Frequency Structural Simulator (HFSS) is applied in this analysis. The impedance bandwidth of the monopole antenna cover 3.1–12.3 GHz (9.2 GHz, BW) frequency range. The messurement displayed that the designed antenna achieved excellent gain and stable omnidirectional radiation patterns within the UWB. The maximum gain of 6.8 dBi and omnidirectional radiation pattern makes the proposed antenna that is suitable for UWB systems.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 628 ◽  
Author(s):  
Josiel Cruz ◽  
Alexandre Serres ◽  
Adriano de Oliveira ◽  
George Xavier ◽  
Camila de Albuquerque ◽  
...  

A new, bio-inspired printed monopole antenna (PMA) model is applied to monitor partial discharge (PD) activity in high voltage insulating systems. An optimized sensor was obtained by designing a PMA in accordance with the characteristics of the electromagnetic signal produced by PD. An ultra-wideband (UWB) antenna was obtained by applying the truncated ground plane technique. The patch geometry was bio-inspired by that of the Inga Marginata leaf, resulting in a significant reduction in size. To verify the operating frequency and gain of the PMA, measurements were carried out in an anechoic chamber. The results show that the antenna operating bandwidth covers most of the frequency range of PD occurrence. Moreover, the antenna presented a good sensitivity (mean gain of 3.63 dBi). The antenna performance was evaluated through comparative results with the standard IEC 60270 method. For this purpose, simultaneous tests were carried out in a PD generator arrangement, composed by an oil cell with point-to-plane electrode configurations. The developed PMA can be classified as an optimized sensor for PD detection and suitable for substation application, since it is able to measure PD radiated signals with half the voltage levels obtained from the IEC method and is immune to corona discharges.


Sign in / Sign up

Export Citation Format

Share Document