Performance Analysis of 14 MW Grid-Connected Photovoltaic System

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ahmed S Kagilik ◽  
Abduraouf M Tawel

Many Libyan authorities proposed to investigate the possibility of utilizing a suitable terrain in Libya to add generation capacity of large-scale photovoltaic power plants. In this paper, the first grid-connected PV plant of 14 MWp which will be executed in Hoon city and supported by the Renewable Energy Authority of Libya (REAOL) is presented. To understand and improve the operational behavior of PV system, a comprehensive study including the plant design and detailed performance analysis under a local climate conditions is performed. Using polycrystalline silicon technology, the first year energy yield is estimated and the monthly system output for this plant is calculated. The performance ratio and various power losses (temperature, irradiance, power electronics, interconnection, etc.) are determined. The PV system supplied 24964 MWh to the grid during the first year giving an average annual overall yield factor 1783 kWh/kWp and average annual performance ratio of the system of 76.9%.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ahmed S Kagilik ◽  
Abduraouf M Tawel

Many Libyan authorities proposed to investigate the possibility of utilizing a suitable terrain in Libya to add generation capacity of large-scale photovoltaic power plants. In this paper, the first grid-connected PV plant of 14 MWp which will be executed in Hoon city and supported by the Renewable Energy Authority of Libya (REAOL) is presented. To understand and improve the operational behavior of PV system, a comprehensive study including the plant design and detailed performance analysis under a local climate conditions is performed. Using polycrystalline silicon technology, the first year energy yield is estimated and the monthly system output for this plant is calculated. The performance ratio and various power losses (temperature, irradiance, power electronics, interconnection, etc.) are determined. The PV system supplied 24964 MWh to the grid during the first year giving an average annual overall yield factor 1783 kWh/kWp and average annual performance ratio of the system of 76.9%.


Author(s):  
Baraa Mahmoud Dawoud ◽  
Siow Chun Lim

<span>Malaysia is rapidly expanding the generation capacity of solar power through large scale solar (LSS) projects with the aim to achieve 20% renewable energy mix by 2025. This has motivated many solar industry players to explore the usage of solar PV with single axis tracker (SAT) system. However, many are still hesitant due to the lack of understanding on the comparative performance between fixed mounted solar PV with solar PV with SAT system. This paper aims to provide a comparative analysis on the performance of both systems. Simulation using PVSyst 6.83 was performed in five potential LSS sites spread across Peninsular Malaysia in Perlis, Kelantan, Pahang, Selangor and Johor with the same installed capacity of 10.32MWp. The energy yield and capacity factor for 21 years were simulated. On the average, it was found that SAT outperforms fixed mounted solar PV system by 15.08% based on their performance on their first year operation. </span>


Author(s):  
Shubham Tiwari

Abstract: Grid connected rooftop PV systems are the most common form of solar energy utilization that helps home owners to reduce carbon footprint and save money in utility bills. This project focuses on the design and modelling of a 3KW residential PV system connected to a 240V single phase grid. The purpose of this study was to conduct an independent experiment on a photovoltaic system with microinverters, to determine their performance characteristics in shaded and unshaded conditions. The systems have fixed tilt angle and fixed azimuth angle. In order to analyse the performance of the systems, the Energy Yield, Performance Ratio, Capacity factor and Annual Energy have been used. This allowed to obtain reliable metrics even with different Irradiance values and different Peak Powers. In the conventional central inverters, several strings of PV modules are combined in order to achieve the power required from the inverter to operate. Strings are connected in parallel and then these strings are led to the inverter after running several meters of DC cables. These cables are often very thick and as a result are very expensive while at the same time, they add losses to the overall system. On the other hand, AC cables are much less expensive and they have fewer losses. A residential system was designed in SAM using specific weather data. The simulation results supported the fact that micro inverters perform well in both shaded and non-shaded conditions. A significant advantage of Micro Inverters is the avoidance of shading losses and mismatch among different PV technologies which consists a great challenge on PV installations. The String Inverter system produced an annual energy of 4763 kWh in the first year with no shading and 4286 kWh in the first year with shading losses. Keywords: Inverters, Photovoltaic cells, Photovoltaic systems, Solar energy, Solar panels.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Martin Libra ◽  
Pavel Kouřím ◽  
Vladislav Poulek

PV power plants have been recently installed in very large scale. So the effects of the solar eclipse are of big importance especially for grid connected photovoltaic (PV) systems. There was a partial solar eclipse in Prague on 20th March 2015. We have evaluated the data from our facility in order to monitor the impact of this natural phenomenon on the behavior of PV system, and these results are presented in the paper. The behavior of PV system corresponds with the theoretical assumption. The power decrease of the PV array corresponds with the relative size of the solar eclipse.I-Vcharacteristics of the PV panel correspond to the theoretical model presented in our previous work.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 586
Author(s):  
Fadhil Y. Al-Aboosi ◽  
Abdullah F. Al-Aboosi

Solar photovoltaic (PV) systems have demonstrated growing competitiveness as a viable alternative to fossil fuel-based power plants to mitigate the negative impact of fossil energy sources on the environment. Notwithstanding, solar PV technology has not made yet a meaningful contribution in most countries globally. This study aims to encourage the adoption of solar PV systems on rooftop buildings in countries which have a good solar energy potential, and even if they are oil or gas producers, based on the obtained results of a proposed PV system. The performance of a rooftop grid-tied 3360 kWp PV system was analyzed by considering technical, economic, and environmental criteria, solar irradiance intensity, two modes of single-axis tracking, shadow effect, PV cell temperature impact on system efficiency, and Texas A&M University as a case study. The evaluated parameters of the proposed system include energy output, array yield, final yield, array and system losses, capacity factor, performance ratio, return on investment, payback period, Levelized cost of energy, and carbon emission. According to the overall performance results of the proposed PV system, it is found to be a technically, economically, and environmentally feasible solution for electricity generation and would play a significant role in the future energy mix of Texas.


Author(s):  
M. Aravindan ◽  
V. Balaji ◽  
V. Saravanan ◽  
M. Arumugam

This manuscript reports the monitored performance results of roof top solar photovoltaic (PV) power plants in different parts of Tamilnadu, India. In this work, PV plants of capacities 84 kWp and 18 kWp located at Tirunelveli and Ranipet respectively in Tamilnadu are considered. During an eight month period, of September 2014 to April 2015, these plants had generated 43.99 MWh and 15.55 MWh units of electricity respectively. The average electricity production per day for the considered period of these plants is 181.74 kWh and 62.81 kWh respectively. The performance ratio (PR) of these plants PV1 and PV2 is found to be 0.52 and 0.86 respectively. The characteristics of poly crystalline PV modules and the performance of employed photovoltaic inverters are also analyzed.It is observed that external conditions like climate and bad weather significantly reduces the PV system output, whereas it reduces marginally due to inverter failure as observed from the values of energy yield and performance ratio of these plants. Online monitoring of PV plant with DC/AC line and phase voltages and current waveforms observed for the given day are also presented.


2013 ◽  
Vol 448-453 ◽  
pp. 1491-1496
Author(s):  
Meng Nan Cao ◽  
Ying Ning Qiu ◽  
Hao Wang

The energy yield of PV system with different material, declination angle and land covering ratio are presented. Comparisons are made between two Chinese cities, Beijing and Nanjing. Shading effects are also investigated for the PV systems energy yield calculation. It shows that by neglecting the losses due to weather and the temperature effects, for the location with higher latitude (such as Beijing) the PV system installed with double junction solar cells (micromorph silicon) is predicted to have lower Performance Ratio than that with mono-crystalline silicon and multi-crystalline silicon. An optimum row spacing of a PV system should be considered for limited occupation area. The criteria above are important for large scale PV system design and its efficiency maximization. The simulation is useful to predict the power fluctuation delivered by PV system due to the spectral, seasonal variation and geometry difference.


2020 ◽  
Vol 12 (21) ◽  
pp. 9227
Author(s):  
Humberto Vidal ◽  
Marco Rivera ◽  
Patrick Wheeler ◽  
Nicolás Vicencio

Solar PV structures for locations at high latitudes in the Northern and Southern Hemispheres are increasingly in the spotlight. The work reported in this paper analyses the behaviour of a grid-connected 8.2 kWp photovoltaic system to either feed on-site electrical loads (a public institution, Corporación Nacional Forestal (CONAF), located 5.5 km south of Punta Arenas, lat. 53° S) or to feed into the electrical grid when the photovoltaic system generation is higher than the on-site load demand. The system simulation uses the PVSyst software with Meteonorm derived and measured climate information sets (ambient temperature, solar irradiation and wind speed). The agreement between the simulated and measured energy yield is analysed including the evaluation of the optimal generation energy of the PV array, the energy that is fed into the network, the performance ratio, and the normalised energy generation per installed kWp. The PV system considered in this work generates 7005.3 kWh/year, out of which only 6778 kWh/year are injected into the grid. The measured annual performance ratio is around 89%. The normalised productions of the inverter output or final system yield, i.e., useful energy, is 3.6 kWh/kWp/day. The measured annual average capacity factor obtained from this study is 15.1%. These performance parameters will encourage greater use of photovoltaic technology in the Chilean Patagonia region.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1261
Author(s):  
Christopher Gradwohl ◽  
Vesna Dimitrievska ◽  
Federico Pittino ◽  
Wolfgang Muehleisen ◽  
András Montvay ◽  
...  

Photovoltaic (PV) technology allows large-scale investments in a renewable power-generating system at a competitive levelized cost of electricity (LCOE) and with a low environmental impact. Large-scale PV installations operate in a highly competitive market environment where even small performance losses have a high impact on profit margins. Therefore, operation at maximum performance is the key for long-term profitability. This can be achieved by advanced performance monitoring and instant or gradual failure detection methodologies. We present in this paper a combined approach on model-based fault detection by means of physical and statistical models and failure diagnosis based on physics of failure. Both approaches contribute to optimized PV plant operation and maintenance based on typically available supervisory control and data acquisition (SCADA) data. The failure detection and diagnosis capabilities were demonstrated in a case study based on six years of SCADA data from a PV plant in Slovenia. In this case study, underperforming values of the inverters of the PV plant were reliably detected and possible root causes were identified. Our work has led us to conclude that the combined approach can contribute to an efficient and long-term operation of photovoltaic power plants with a maximum energy yield and can be applied to the monitoring of photovoltaic plants.


Sign in / Sign up

Export Citation Format

Share Document