scholarly journals Performance evaluation of roof top solar photovoltaic systems in Tamilnadu

Author(s):  
M. Aravindan ◽  
V. Balaji ◽  
V. Saravanan ◽  
M. Arumugam

This manuscript reports the monitored performance results of roof top solar photovoltaic (PV) power plants in different parts of Tamilnadu, India. In this work, PV plants of capacities 84 kWp and 18 kWp located at Tirunelveli and Ranipet respectively in Tamilnadu are considered. During an eight month period, of September 2014 to April 2015, these plants had generated 43.99 MWh and 15.55 MWh units of electricity respectively. The average electricity production per day for the considered period of these plants is 181.74 kWh and 62.81 kWh respectively. The performance ratio (PR) of these plants PV1 and PV2 is found to be 0.52 and 0.86 respectively. The characteristics of poly crystalline PV modules and the performance of employed photovoltaic inverters are also analyzed.It is observed that external conditions like climate and bad weather significantly reduces the PV system output, whereas it reduces marginally due to inverter failure as observed from the values of energy yield and performance ratio of these plants. Online monitoring of PV plant with DC/AC line and phase voltages and current waveforms observed for the given day are also presented.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ahmed S Kagilik ◽  
Abduraouf M Tawel

Many Libyan authorities proposed to investigate the possibility of utilizing a suitable terrain in Libya to add generation capacity of large-scale photovoltaic power plants. In this paper, the first grid-connected PV plant of 14 MWp which will be executed in Hoon city and supported by the Renewable Energy Authority of Libya (REAOL) is presented. To understand and improve the operational behavior of PV system, a comprehensive study including the plant design and detailed performance analysis under a local climate conditions is performed. Using polycrystalline silicon technology, the first year energy yield is estimated and the monthly system output for this plant is calculated. The performance ratio and various power losses (temperature, irradiance, power electronics, interconnection, etc.) are determined. The PV system supplied 24964 MWh to the grid during the first year giving an average annual overall yield factor 1783 kWh/kWp and average annual performance ratio of the system of 76.9%.


2018 ◽  
Vol 7 (2.25) ◽  
pp. 143
Author(s):  
Bhuvaneswari C ◽  
Vijay B ◽  
Natarajan P

The primary and most universal measure of all kinds of work by nature is the energy. Coal, Natural gas, Oil and Nuclear energy are net energy yielders and primary sources of energy. The intent of this paper is to assess the performance of 15KW solar power plant installed in Priyadarshini Engineering College (PEC) campus, Vaniyambadi, Vellore District, Tamil Nadu. A 15 kW solar PV plant has been installed to supply electricity to the internet laboratory and library (lighting load). The results obtained from monitoring a 15 KW Solar Photovoltaic system installed on a library roofing of 10m height building. The system was monitored between (July-Sep2016) from 9.30AM to 4.30PM for three days in a week from Monday to Wednesday. The results can be used to provide manufacturers to develop their products and enhance the knowledge in the future in order to improve the design of the off-grid solar photovoltaic system, return of investment during these years. This work focuses on the performance of the solar photovoltaic plant (July-Sep2016) monthly average demand and annual performance parameters, Efficiency, fill factor,capacity Utilisation factor and the characteristics have been plotted in a graph. The graph is drawn between Generated power vs consumed power. The annual yield of the solar photovoltaic plant ranged from 6500-7000 Kwh and performance ratio of 78%. It has capacity Utilisation factor with 6.97%. 


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ahmed S Kagilik ◽  
Abduraouf M Tawel

Many Libyan authorities proposed to investigate the possibility of utilizing a suitable terrain in Libya to add generation capacity of large-scale photovoltaic power plants. In this paper, the first grid-connected PV plant of 14 MWp which will be executed in Hoon city and supported by the Renewable Energy Authority of Libya (REAOL) is presented. To understand and improve the operational behavior of PV system, a comprehensive study including the plant design and detailed performance analysis under a local climate conditions is performed. Using polycrystalline silicon technology, the first year energy yield is estimated and the monthly system output for this plant is calculated. The performance ratio and various power losses (temperature, irradiance, power electronics, interconnection, etc.) are determined. The PV system supplied 24964 MWh to the grid during the first year giving an average annual overall yield factor 1783 kWh/kWp and average annual performance ratio of the system of 76.9%.


2017 ◽  
Vol 5 (2) ◽  
pp. 110 ◽  
Author(s):  
Adebayo Fashina ◽  
Salifu Azeko ◽  
Joseph Asare ◽  
Chukwuemeka Ani ◽  
Vitalis Anye ◽  
...  

This paper presents the results of a study on the reliability and performance of the solar-powered street lighting systems installed at the African University of Science and Technology (AUST) in Nigeria, a hot and humid environment. The technical performance of the systems was studied using the following performance indicators: system energy yield, capture loss, as well as the system performance ratio while the reliability of the systems was examined using a model developed from the findings from the maintenance and fault diagnosis of the systems. The model was used to predict the total failure and survival probability of the systems using the Weibull distribution. The performance evaluation during the monitored period (February 2012 to January 2015) indicated that the performance ratios of the systems vary from 70% to 89% and the energy yields of the systems ranging from 2.87 h/day to 5.57 h/day. The results from the reliability analysis also showed that when the stress concentration factor around the notch between the cable terminals in the charge controller increases, the charge controller will become overheated, which in turn affected other components of the systems. The implications of this study are also discussed for the design and development of future solar-powered street lighting systems.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2701 ◽  
Author(s):  
Saeed Abdul-Ganiyu ◽  
David A Quansah ◽  
Emmanuel W Ramde ◽  
Razak Seidu ◽  
Muyiwa S. Adaramola

The main objective of this paper is to experimentally assess the real-life outdoor performance of a photovoltaic-thermal (PVT) module against a conventional photovoltaic (PV) system in a hot humid tropical climate in Ghana. An experimental setup comprising a water-based mono-crystalline silicon PVT and an ordinary mono-crystalline silicon PV was installed on a rooftop at the Kwame Nkrumah University of Science and Technology in Kumasi and results evaluated for the entire year of 2019. It was observed that the annual total output energy of PV module was 194.79 kWh/m2 whereas that of the PVT for electrical and thermal outputs were 149.92 kWh/m2 and 1087.79 kWh/m2, respectively. The yearly average daily electrical energy yield for the PV and PVT were 3.21 kWh/kWp/day and 2.72 kWh/kWp/day, respectively. The annual performance ratios for the PV and PVT (based on electrical energy output only) were 79.2% and 51.6%, respectively, whilst their capacity factors were, respectively, 13.4% and 11.3%. Whereas the highest monthly mean efficiency recorded for the PV was 12.7%, the highest combined measured monthly mean electrical/thermal efficiency of the PVT was 56.1%. It is also concluded that the PVT is a worthy prospective alternative energy source in off-grid situations.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Moien A. Omar ◽  
Marwan M. Mahmoud

The electricity in Gaza, Palestine, is limited and scheduled for 4-10 hours per day due to political reasons. This status represents a real problem for different sectors. This paper presents an effective solution especially for the energy supply problem in the residential sector by using an unconventional PV system which operates in stand-alone and grid-connected modes. The system includes a storage battery block with a proper capacity to secure for continuous power supply of a residential house with a daily energy load of 10 kWh. It was found that an unconventional PV system of 3.2 kWp and a storage battery block of 19.2 kWh will be able to cover the total daily energy demands of the house including the outlined electricity cutoff hours. The design of this system and specifics of its components are presented in this paper. The system was simulated by Matlab software, where the daily load curve, grid cutoff hours, and the monthly solar radiation are considered. The obtained simulation results show that the produced PV energy exceeds the load demands during nine months of the year, and thereby, a high battery state of charge (SOC) in the range of 73-84% is achieved. During the three months of the lowest solar radiation (Dec.-Feb.), the produced PV energy is equal to the load demand while the battery state of charge varies in the range of 40-49% which verifies the appropriateness of the proposed PV system. The daily energy yield of the PV system varies between 2.6 and 5.4 kWh/kWp in January and July, respectively, which corresponds to a performance ratio of 90% and 66.25%, respectively.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
S. Malathy ◽  
R. Ramaprabha

The energy yield of the photovoltaic (PV) system is reduced to a greater extent under shaded conditions. Reconfiguration and repositioning techniques demand more number of sensors, switches, and an efficient control algorithm and are well suited for rapidly changing shade conditions. However, for fixed shading that is common in urban rooftop installations, where the shading is partial and usually caused by nearby structures, a simple, yet effective technique is necessary. This paper addresses the issue by grouping the panels based on shade intensity and the merits of asymmetrical multilevel inverter (AMLI) are utilized as the working voltage of each group is different.


2021 ◽  
Author(s):  
Williams S. Ebhota ◽  
Pavel Y. Tabakov

Abstract A rooftop solar photovoltaic (PV) system is an alternative electricity source that is increasingly being used for households. The potential of solar PV is location dependent that needs to be assessed before installation. This study focuses on the assessment of a solar PV potential of a site on coordinates − 29.853762°, 031.00634°, at Glenmore Crescent, Durban North, South Africa. In addition, it evaluates the performance of a 6 kW installed capacity grid-connected rooftop solar PV system to supply electricity to a household. The results, obtained from PV design and simulation tools – PV*SOL, Solargis prospect and pvPlanner, were used to analyse and establish the site and PV system technical viability. The system’s configuration is as follows: load profile - a 2-Person household with 2-children, energy consumption − 3500 kWh, system size − 6 kWp, installation type - roof mount, PV module type - c-Si - monocrystalline silicon, efficiency − 18.9%, orientation of PV modules -Azimuth 0° and Tilt 30°, inverter 95.9% (Euro efficiency), and no transformer. The results show: meteorological parameters - global horizontal irradiation (GHI) 1659.3 kWh/m2, direct normal irradiation (DNI) 1610.6 kWh/m2, air temperature 20.6°C; performance parameters - annual PV energy 8639 kWh, Specific annual yield 1403 kWh/kWp, performance ratio (PR) 74.9%, avoided CO₂ emissions 5662 kg/year, and solar fraction 42.5 %. The analysis and benchmarking of the results show that the proposed solar PV system under the current conditions is technically viable for household electrification in Durban North, South Africa.


2021 ◽  
Vol 2 (2) ◽  
pp. 32-39
Author(s):  
Carlos Pinho ◽  
Luís Ramos ◽  
Zenaida Mourão

The presents study evaluates the performance of a hypothetical 1-hectare solar photovoltaic (PV) plant located in the Baía Azul Beach, in Benguela, Angola. The first year performance of the plant composed by 2,784 DuoMax 365 PV modules from Trina Solar Company was evaluated by means of the VelaSolaris Polysum software package. The total surface area of the PV modules was of 5,456.64 m2. The annual alternate current electricity production was of 1,511.70 MWh allowing a total of 710.47 tCO2 of CO2 emissions reduction and a performance ratio of 72.8 %. The annual average energy and exergy efficiencies of the PV system were respectively of of 14.3 % and 14.7 %.


2020 ◽  
Vol 26 (4) ◽  
pp. 21-32
Author(s):  
Nibras Mahmood Obaid ◽  
Emad T. Hashim ◽  
Naseer K. Kasim

The performance analyses of 15 kWp (kW peak) Grid -Tied solar PV system (that considered first of its type) implemented at the Training and Energy Research Center Subsidiary of Iraqi Ministry of Electricity in Baghdad city has been achieved. The system consists of 72 modules arranged in 6 strings were each string contains 12 modules connected in series to increase the voltage output while these strings connected in parallel to increase the current output. According to the observed duration, the reference daily yields, array daily yields and final daily yields of this system were (5.9, 4.56, 4.4) kWh/kWp/day respectively. The energy yield was 1585 kWh/kWp/year while the annual total solar irradiation received by solar array system was 1986.4kWh/m2. The average power losses per day of array, system losses and overall losses were (1.38, 0.15, 1.53) kWh/kWp/day respectively. The average capacity factor and performance ratio per year were 18.4% and 75.5% respectively. These results highlighted the performance analyses of this PV solar system located in Baghdad city. The performance can be considered as good and significant comparing with other world PV solar stations.  


Sign in / Sign up

Export Citation Format

Share Document