Research on the Design and Control Strategy of Chang’e-3 Soft Landing Orbit and Its Sensitivity Analysis during the Epidemic of Coronavirus Disease

2020 ◽  
Vol 01 (01) ◽  
Author(s):  
Li Y ◽  
Zhao H ◽  
Wang B ◽  
Zhu T ◽  
Wang Z ◽  
...  
2010 ◽  
Vol 53 (5) ◽  
pp. 529-544 ◽  
Author(s):  
I. Traulsen ◽  
G. Rave ◽  
J. Krieter

Abstract. A spatial and temporal Monte-Carlo simulation model was developed to analyse the epidemiology and control of foot and mouth disease (FMD). Animal, people and vehicle contacts as well as airborne and local spread represented the FMD virus transmission between farms housing cattle, pigs or sheep. Contacts were explicitly modelled by routes, airborne transmission by the Gaussian Dispersion model and local spread by distance dependent transmission probabilities. Control measures were implemented according to the EU Directive (2003/85/EG). A sensitivity analysis with a two-level fractional factorial design was used to examine the robustness of the simulation model to extreme input values. The influence of eleven input parameters and interactions between them were estimated: ability of airborne spread, duration of the incubation period, time from infection until infectivity, time from onset of clinical signs until diagnosis, farm density, type of index case, number of farms visited per route, visiting interval, type of the animal sales, control strategy, and delay until start of control strategies. The considered parameters as well as certain two-factor interactions between them showed a significant impact on the epidemic duration and the number of infected and culled farms. Particularly, the parameter airborne spread, farm density, number of farms visited per route and control strategy influenced the course of the epidemic. The consideration of airborne spread as well as the implementation of contacts between farms with routes allowed a detailed analysis of these transmission paths.


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 125
Author(s):  
Xiuhui Huang ◽  
Jun Wang ◽  
Zeqiu Li

In this study, a solvent dehydration column of purified terephthalic acid (PTA) plant was used as the research object. Based on a dynamic model of the solvent dehydration column, a dynamic sensitivity analysis of the key parameters was carried out using Aspen Dynamics. After the dynamic model reached stability, the reflux rate, methyl acetate concentration, and reflux temperature of the solvent dehydration column were adjusted and the changes of the key separation indexes under the corresponding disturbance were analyzed. According to the analysis results, a sensitive plate temperature controller was added to carry out the dynamic sensitivity analysis. In addition, the acetic acid (HAc) concentration of the bottom of the column was found to be unstable in the dynamic sensitivity analysis. Considering the HAc concentration controller of the column bottom, two control strategies were designed. By analyzing the dynamic response of the feed flow disturbance under different control strategies, a more suitable control strategy under different conditions was obtained. From this, a reasonable method could be derived to design the control strategy, thereby providing a theoretical basis for further real-time optimization and advanced control of solvent dehydration in a PTA plant.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (05) ◽  
pp. 295-305
Author(s):  
Wesley Gilbert ◽  
Ivan Trush ◽  
Bruce Allison ◽  
Randy Reimer ◽  
Howard Mason

Normal practice in continuous digester operation is to set the production rate through the chip meter speed. This speed is seldom, if ever, adjusted except to change production, and most of the other digester inputs are ratioed to it. The inherent assumption is that constant chip meter speed equates to constant dry mass flow of chips. This is seldom, if ever, true. As a result, the actual production rate, effective alkali (EA)-to-wood and liquor-to-wood ratios may vary substantially from assumed values. This increases process variability and decreases profits. In this report, a new continuous digester production rate control strategy is developed that addresses this shortcoming. A new noncontacting near infrared–based chip moisture sensor is combined with the existing weightometer signal to estimate the actual dry chip mass feedrate entering the digester. The estimated feedrate is then used to implement a novel feedback control strategy that adjusts the chip meter speed to maintain the dry chip feedrate at the target value. The report details the results of applying the new measurements and control strategy to a dual vessel continuous digester.


2014 ◽  
Vol 9 (4) ◽  
pp. 792 ◽  
Author(s):  
Anna Pinnarelli ◽  
Giuseppe Barone ◽  
Giovanni Brusco ◽  
Alessandro Burgio ◽  
Daniele Menniti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document