scholarly journals Assessment of heavy metal concentrations in the muscles of ten commercial fish species from Lagos lagoon, NigeriaAssessment of heavy metal concentrations in the muscles of ten commercial fish species from Lagos lagoon, Nigeria

2021 ◽  
Vol 44 (3) ◽  
pp. 140-151
Author(s):  
I. O. Taiwo ◽  
O. A. Olopade ◽  
B. T. Adeniyi

The study was undertaken to assess the concentration of five heavy metals (zinc (Zn), lead (Pb), copper (Cu), iron (Fe) and manganese (Mn)) in the muscles of Tilapia zilli, Hydrocynus fiscalis, Parapristipoma humile, Caranx hippo, Cynoglossusa caudatus, Chrysichthys nigrodigitatus, Letjanus sp, Portunus validus, Sardinella maderensis, and Sphyreana sp. The concentrations of heavy metals were measured by atomic absorption spectrophotometry after digestion of the samples. There were significant differences (P<0.05) in the concentration of heavy metals in fish muscles. There was no specific pattern in the levels of heavy metals among the fish species. P. validus had the highest concentration of Zinc in the fish sampled with a mean value of 14.45mg/g while T. zilli had the lowest concentrations of Zn and Mn. Sphyreana sp had the highest concentrations of Lead and Copper and Manganese in the muscles. Iron concentration was highest in the muscle of S. maderensis. In this study, the overall average concentrations of metals in fish muscles were in the order of Zn> Fe > Pb> Cu> Mn. The values of Zn and Cu were within or lower than the acceptable limits FAO/WHO (Food and Agriculture Organization Of the United Nations/World Health Organization) for concentration of heavy metals in fish while levels of Pb, Fe and Mn in the muscles of the various fishes were beyond the safe limit in foods. Close monitoring of heavy metal pollution of Lagos Lagoon is strongly advocated, in view of possible risks to the health of consumers.

2017 ◽  
Vol 7 (14) ◽  
pp. 48-61 ◽  
Author(s):  
Olatunde Sunday Eludoyin ◽  
Onisoya Margaret Ogbe

Background. Consumption of plants such as Carica papaya grown around automobile workshops is common in big cities in Nigeria. However, little is known about the heavy metals contamination of these consumables due to the influence of automobile emissions during maintenance activities. Objectives. This study aimed to assess heavy metal concentrations in C. papaya and supporting soils around automobile workshops in Port Harcourt Metropolis, Rivers State, Nigeria. Methods. Seven automobile workshops were used for the present study. First, 20 m × 20 m quadrats were laid out for soil and C. papaya tissue sampling. One composite soil sample was collected from the topsoil (0–15 cm depth) around each of the automobile workshops. Three C. papaya stands at least 30 cm apart around each workshop were used for the study and from these stands, tissues (root, stem, leaf, fruit) of C. papaya were collected. Standard laboratory techniques were used to determine the pH, electrical conductivity (EC) and heavy metals (lead (Pb), mercury (Hg), cadmium (Cd), copper (Cu), and zinc (Zn)) in the soil samples and C. papaya tissues. Pairwise t-test was used to determine significant differences (p&lt;0.05) in the heavy metal concentrations in soil and C. papaya tissues between the sample and control sites, while correlation statistics were used to determine the relationship of heavy metal concentrations between soil and C. papaya tissues. Results. C. papaya tissues and supporting soil had significantly higher levels of pH, EC and heavy metals in the sampled plots than the control plot. The heavy metal concentrations in C. papaya and soil occurred in the decreasing order of Pb&gt;Cu&gt;Hg&gt;Zn&gt;Cd. The fruit of C. papaya had the highest mean concentrations of Pb (51.4±14.1 mg/kg) and Zn (26.4±1.9 mg/kg), while the leaf had the highest mean concentration of Hg (32.0±2.3 mg/kg). The pH, Cu and Zn in the supporting soil were significantly correlated with the levels in the C. papaya tissues. Conclusion. Bio-accumulation of heavy metals by C. papaya is evident around automobile workshops, and Pb, Hg, Cd concentrations were found to be above the permissible limits for human consumption according to World Health Organization (WHO) standards. Consumption of food materials grown around automobile workshops could pose health risks. Competing interests. The authors declare no competing financial interests.


2019 ◽  
Author(s):  
Ngozi Oguguah

Background. The most significant sources of food-borne diseases are microbiological and chemical hazards. The health risk due to consumption of food from aquatic ecosystems contaminated with hazardous chemicals including metals has increased globally, especially in developing countries like Nigeria.Objectives. The concentration and human health implications of trace metals in fish of economic importance in Lagos lagoon were investigated by determining the degree of contamination with heavy metals of selected fish from Lagos lagoon and assessing the possible health risks associated with fish consumption.Methods. Fish of economic importance including Caranx hippos, Chrysichthys nigrodigitatus, Elops lacerta, Galeoides decadactylus, Ilisha africana, Liza falcipinnis, Lutjanus goreensis, Mugil cephalus, Pseudotolithus senegalensis, Sarotherodon spp, Sphyraena spp, and Tilapia spp were bought from fishermen fishing in Lagos lagoon. The fish tissue samples were digested and analyzed in five replicates for heavy metals (lead, cadmium, iron, manganese and zinc) using a Varian AA600 atomic absorption spectrometer.Results. There were considerable variations in the concentrations of heavy metals among different species. The twelve fish species collected from Lagos lagoon were found to contain various concentrations of heavy metals and the levels of accumulation of these heavy metals varied across different species. Lead, cadmium, and manganese were present in all the studied fish species at higher concentrations than the maximum allowable concentrations in fish recommended by the Food and Agricultural Organization (FAO) and World Health Organization (WHO). The target hazard quotient (THQ) estimated for individual heavy metals through consumption of different fish species was less than 1 for all individual heavy metal in all the fish species.Conclusions. Controls on the dumping of wastes in the lagoon are needed, along with regular monitoring. Currently, no potential non-carcinogenic health risks from ingestion of a single heavy metal through consumption of these fish species was found.


2021 ◽  
Vol 50 (2) ◽  
pp. 232-246
Author(s):  
Özge Zencir Tanır

Abstract The study aimed at determining the concentration of heavy metals in muscle, liver, and gill tissues of four fish species (Acanthobrama marmid, Capoeta umbla, Capoeta trutta and Chondrostoma regium) collected from five sites in the Karasu River, Erzincan, between July 2019 and January 2020. The relationships between fish size (length and weight) and metal concentrations in the tissues were also investigated using Pearson correlation analysis. Concentrations of Al, Fe, Cu, Mn and Zn were higher than those of other metals in all tissue samples from four fish species. Fe and Al concentrations were very high, while the lowest Co, Cd and Pb concentrations were determined in the muscle, liver and gill tissues. The results of Pearson correlation analysis showed that significant relationships between heavy metal concentrations and fish size (length and weight) were positive (p < 0.01, p < 0.05), except for a few cases. Furthermore, heavy metal concentrations in the edible parts (muscle) of the studied fish species did not exceed the maximum acceptable concentrations (MACs) proposed by national and international food standards and were safe within human consumption limits, except for Cr.


2020 ◽  
Vol 1 (5) ◽  
pp. 12-21
Author(s):  
Ikiriko N ◽  
Robert B ◽  
Amuzie C C

Ectoparasites and heavy metal pollution pose health risks to both wild and aquaculture fish species. Here, we examine the ectoparasites of fish species (Hemichromis fasciatus, Liza falcipinnis and Sarotherodon galileus) from Abalama and Ilelema locations of the Buguma Creek, Rivers State, Nigeria, over a period of six months (February to July, 2020). Fish tissues (muscles, gills and gut) were also examined for heavy metals (Cr, Cd and Pb). Parasitological investigations were done following standard procedures, as well as the heavy metal analysis which was done using atomic absorption spectrophotometer after dry ashing-acid digestion. Two ectoparasites were isolated: Zeylanicobdella arugamensis from L. falcipinnis at both locations and Cymothoa exigua from H. fasciatus at Ilelema. In surface water, Cr concentration was <0.003µg/l throughout the study period; Cd concentrations ranged between 0.06µg/l and 0.09µg/l at both locations, while Pb values were 0.29µg/l - 0.64µg/l at Abalama, and 0.56µg/l – 0.71µg/l at Ilelema. These values were within international acceptable standards. In fish tissues, however, Cr values were <0.003µg/g in both locations throughout the study period. At Abalama, Cd ranged between 7.18µg/g and 8.15µg/g, and Pb between 72.83µg/g and 92.23µg/g. At Ilelema, Cd concentrations were between 7.56µg/g and 8.67µg/g while Pb values ranged between 78.32µg/g and 92.88µg/g. Differences in heavy metal concentrations in both water and fish tissues between both locations were not statistically significant (p>0.05). All fish species and tissues bioaccumulated appreciable concentrations of the heavy metals. Cr in fish tissues was within permissible limits, but all Cd and Pb values exceeded international permissible limits.


2021 ◽  
pp. 46-51
Author(s):  
Wilfred–Ekprikpo P. C.

This study investigated the heavy metal concentrations in different organs such as gills, muscles, liver and gatro-intestinal tract (GIT) of two species of Goby: Porogobius schelegelii and Bathygobius soporator from Buguma Creek, Rivers State, Nigeria. The fish samples were collected from the creek and were preserved in ice chest box and transported to the laboratory for analysis. Samples were digested by using standard laboratory methods. The concentrations of metals were analyzed using a Varian AA240 Fast Sequential Flame Atomic Absorption Spectrophotometer (AAS). The Results obtained indicated that heavy metals such as Chromium (Cr), Lead (Pb), Zinc (Zn), Cadmium (Cd), and Nickel (Ni) were significantly higher (p<0.05) in the liver of the two species than in the muscle, gills and the GIT. Comparatively, the concentrations of these metals were higher in the specie B.soporator than P. schelegelii in all the organs of the fishes under consideration. The heavy metal concentrations recorded in this study were above the limits recommended by Food and Agricultural Organization/ World Health Organization. The high concentration of heavy metals above permissible level suggests the need for caution during the consumption of these species from Buguma Creek due to health implications associated with heavy metals.


2002 ◽  
Vol 11 (4) ◽  
pp. 285-300 ◽  
Author(s):  
V. MÄNTYLAHTI ◽  
P. LAAKSO

Increasing concentrations of arsenic and heavy metals in agricultural soils are becoming a growing problem in industrialized countries. These harmful elements represent the basis of a range of problems in the food chain, and are a potential hazard for animal and human health. It is therefore important to gauge their absolute and relative concentrations in soils that are used for crop production. In this study the arsenic and heavy metal concentrations in 274 mineral soil samples and 38 organogenic soil samples taken from South Savo province in 2000 were determined using the aqua regia extraction technique. The soil samples were collected from 23 farms.The elements analyzed were arsenic, cadmium, chromium, copper, mercury, nickel, lead and zinc. The median concentrations in the mineral soils were:As 2.90 mg kg –1, Cd 0.084 mg kg –1, Cr 17.0 mg kg –1, Cu 13.0 mg kg –1, Hg 0.060 mg kg –1, Ni 5.4 mg kg –1, Pb 7.7 mg kg –1, Zn 36.5 mg kg –1. The corresponding values in the organogenic soils were:As 2.80 mg kg –1, Cd 0.265 mg kg –1, Cr 15.0 mg kg –1, Cu 29.0 mg kg –1, Hg 0.200 mg kg –1, Ni 5.9 mg kg –1, Pb 11.0 mg kg –1, Zn 25.5 mg kg –1. The results indicated that cadmium and mercury concentrations in the mineral and organogenic soils differed. Some of the arsenic, cadmium and mercury concentrations exceeded the normative values but did not exceed limit values. Most of the agricultural fields in South Savo province contained only small amounts of arsenic and heavy metals and could be classified as “Clean Soil”. A draft for the target values of arsenic and heavy metal concentrations in “Clean Soil” is presented.;


2020 ◽  
Vol 10 (27) ◽  
pp. 200911
Author(s):  
Aung Zaw Tun ◽  
Pokkate Wongsasuluk ◽  
Wattasit Siriwong

Background. Artisanal and small-scale mining activities are widely practiced globally. Concentrations of heavy metals associated with gold, such as copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb) can increase in the environment as a result of mining activities, leading to environmental pollution and pose toxicity risks to humans and animals. Objectives. The aim of the present study was to investigate soil concentrations of toxic heavy metals in placer small-scale gold mining operations in Myanmar. Methods. Soil samples were collected from three placer small-scale gold mining sites: Site A located in the Hmawbon public protected forest, Site B and Site C, situated in the Nant-Kyin reserved forest around Nar Nant Htun village. At each site, soil samples were collected from four gold mining stages (ore processing, sluicing, panning, and amalgamation). Atomic absorption spectroscopy was utilized to examine the concentrations of As, Cd, Pb, and Hg. Results. The highest heavy metal concentrations were generally found in the amalgamation stages across all the gold mining sites. Across the three mining sites, the maximum heavy metal concentrations in the amalgamation stage were 22.170 mg.kg−1 for As, 3.070 mg.kg−1 for Cd, 77.440 mg.kg−1 for Hg, and 210.000 mg.kg−1 for Pb. Conclusions. The present study examined the concentrations of As, Cd, Hg and Pb in the soil of several small-scale gold mining sites in Banmauk Township, Myanmar. The results demonstrated the presence of high concentrations of heavy metals in the soil of the gold mining sites. Miners in this area work without proper personal protective equipment, and frequent exposure to heavy metals in the soil may cause adverse health effects. The present study provides baseline data for future risk assessment studies of heavy metal contamination in gold mines. Competing Interests. The authors declare no competing financial interests


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1840 ◽  
Author(s):  
Lei Huang ◽  
Hongwei Fang ◽  
Ke Ni ◽  
Wenjun Yang ◽  
Weihua Zhao ◽  
...  

In this study, surface sediment samples were taken from the Three Gorges Reservoir (TGR) in June 2015 to estimate the spatial distribution and potential risk of Cu, Zn, Cd, Pb, Cr, and Ni (34 sites from the mainstream and 9 sites from the major tributaries), and correlations with environmental variables were analyzed (e.g., median sediment size, water depth, turbidity, dissolved oxygen of the bottom water samples, and total organic carbon, total nitrogen, and total phosphorus of the surface sediment samples). Results show that the heavy metal concentrations in the sediments have increased over the last few decades, especially for Cd and Pb; and the sites in the downstream area, e.g., Badong (BD) and Wushan (WS), have had greater increments of heavy metal concentrations. The sampling sites from S6 to S12-WS are identified as hot spots for heavy metal distribution and have relatively high heavy metal concentrations, and there are also high values for the sites affected by urban cities (e.g., the concentrations of Zn, Cd, Cr and Ni for the site S12-WS). Overall, the heavy metal concentrations increased slightly along the mainstream due to pollutants discharged along the Yangtze River and sediment sorting in the reservoir, and the values in the mainstream were greater than those in the tributaries. Meanwhile, the heavy metal concentrations were generally positively correlated with water depth (especially for Ni), while negatively correlated with dissolved oxygen, turbidity, and median sediment size. These environmental variables have a great impact on the partition of heavy metals between the sediment and overlying water. According to the risk assessment, the heavy metals in the surface sediments of TGR give a low to moderate level of pollution.


Sign in / Sign up

Export Citation Format

Share Document