Is Micromachined Topography of Polydimethyl-Siloxane Surface Effective for Observation of Biological Cell Behavior?

2021 ◽  
Vol 2 (2) ◽  
pp. 2021-0164-2021-0164
Author(s):  
Shigehiro Hashimoto
2004 ◽  
Vol 820 ◽  
Author(s):  
Keith R. Milner ◽  
Mallory Balmer ◽  
Henry J. Donahue ◽  
Alan J. Snyder ◽  
Christopher A. Siedlecki

AbstractIt has been established that material surface topography can have a significant effect on biological cell adhesion, in the absence of changes in surface chemistry. Such investigations were typically performed using surface features with size on the order of microns, comparable to the dimensions of the cells. It has been demonstrated that sub-micron sized topographies that cannot be created via contact lithography also influence cell behavior. The ability to affect cell adhesion is a prime consideration in the development of novel biomaterials. This study reports a two-stage replication molding process for fabricating ordered sub-micron sized features over a large area of biomedical polyether(urethane urea). Such a technique has great applicability in the area of long-term implantable materials as a method for influencing cell-material interactions.


2019 ◽  
Vol 47 (5) ◽  
pp. 1543-1555 ◽  
Author(s):  
Maurizio Mongiat ◽  
Simone Buraschi ◽  
Eva Andreuzzi ◽  
Thomas Neill ◽  
Renato V. Iozzo

Abstract The extracellular matrix is a network of secreted macromolecules that provides a harmonious meshwork for the growth and homeostatic development of organisms. It conveys multiple signaling cascades affecting specific surface receptors that impact cell behavior. During cancer growth, this bioactive meshwork is remodeled and enriched in newly formed blood vessels, which provide nutrients and oxygen to the growing tumor cells. Remodeling of the tumor microenvironment leads to the formation of bioactive fragments that may have a distinct function from their parent molecules, and the balance among these factors directly influence cell viability and metastatic progression. Indeed, the matrix acts as a gatekeeper by regulating the access of cancer cells to nutrients. Here, we will critically evaluate the role of selected matrix constituents in regulating tumor angiogenesis and provide up-to-date information concerning their primary mechanisms of action.


Sign in / Sign up

Export Citation Format

Share Document