scholarly journals Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism

2011 ◽  
Vol 11 (12) ◽  
pp. 5591-5601 ◽  
Author(s):  
J. Lauros ◽  
A. Sogachev ◽  
S. Smolander ◽  
H. Vuollekoski ◽  
S.-L. Sihto ◽  
...  

Abstract. We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the simulated vertical profile of particle number concentration does not correspond to observations. Instead organic induced nucleation leads to good agreement confirming the relevance of the aerosol formation mechanism including organic compounds emitted by the biosphere. The simulation of aerosol concentration within the atmospheric boundary layer during nucleation event days shows a highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated the suitability of our turbulent mixing scheme in reproducing the most important characteristics of particle dynamics within the boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles in the lowest part of the atmospheric boundary layer.

2010 ◽  
Vol 10 (8) ◽  
pp. 20005-20033
Author(s):  
J. Lauros ◽  
A. Sogachev ◽  
S. Smolander ◽  
H. Vuollekoski ◽  
S.-L. Sihto ◽  
...  

Abstract. We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the vertical profile of particle number distribution does not correspond to observations. Instead organic induced nucleation leads to good agreement confirming the relevance of the aerosol formation mechanism including organic compounds emitted by biosphere. Simulation of aerosol concentration inside the atmospheric boundary layer during nucleation days shows highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated suitability of our turbulent mixing scheme in reproducing most important characteristics of particle dynamics inside the atmospheric boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles at the lowest part of the atmospheric boundary layer.


2021 ◽  
Vol 21 (10) ◽  
pp. 7963-7981
Author(s):  
Zhaomin Yang ◽  
Li Xu ◽  
Narcisse T. Tsona ◽  
Jianlong Li ◽  
Xin Luo ◽  
...  

Abstract. Aromatic hydrocarbons can dominate the volatile organic compound budget in the urban atmosphere. Among them, 1,2,4-trimethylbenzene (TMB), mainly emitted from solvent use, is one of the most important secondary organic aerosol (SOA) precursors. Although atmospheric SO2 and NH3 levels can affect secondary aerosol formation, the influenced extent of their impact and their detailed driving mechanisms are not well understood. The focus of the present study is to examine the chemical compositions and formation mechanisms of SOA from TMB photooxidation influenced by SO2 and/or NH3. Here, we show that SO2 emission could considerably enhance aerosol particle formation due to SO2-induced sulfate generation and acid-catalyzed heterogeneous reactions. Orbitrap mass spectrometry measurements revealed the generation of not only typical TMB products but also hitherto unidentified organosulfates (OSs) in SO2-added experiments. The OSs designated as being of unknown origin in earlier field measurements were also detected in TMB SOA, indicating that atmospheric OSs might also be originated from TMB photooxidation. For NH3-involved experiments, results demonstrated a positive correlation between NH3 levels and particle volume as well as number concentrations. The effects of NH3 on SOA composition were slight under SO2-free conditions but stronger in the presence of SO2. A series of multifunctional products with carbonyl, alcohols, and nitrate functional groups were tentatively characterized in NH3-involved experiments based on infrared spectra and mass spectrometry analysis. Plausible formation pathways were proposed for detected products in the particle phase. The volatility distributions of products, estimated using parameterization methods, suggested that the detected products gradually condense onto the nucleation particles to contribute to aerosol formation and growth. Our results suggest that strict control of SO2 and NH3 emissions might remarkably reduce organosulfates and secondary aerosol burden in the atmosphere. Updating the aromatic oxidation mechanism in models could result in more accurate treatment of particle formation for urban regions with considerable SO2, NH3, and aromatics emissions.


2013 ◽  
Vol 52 (4) ◽  
pp. 953-973 ◽  
Author(s):  
John A. Mayfield ◽  
Gilberto J. Fochesatto

AbstractThe high-latitude winter atmospheric boundary layer of interior Alaska continually exhibits a complex layered structure as a result of extreme meteorological conditions. In this paper the occurrence of elevated inversions (EI), surface-based inversions (SBI), and stratified layers in the sub-Arctic from January 2000 to December 2009 is reported. This statistical analysis is based on radiosonde observation data from the Fairbanks National Weather Service station complemented by Winter Boundary Layer Experiment observations in the period 2010–11. This study found that SBIs occurred 64% of the time. An SBI occurred in combination with one, two, three, or four simultaneous EIs 84.86%, 48.49%, 21.23%, and 7.99% of the time, respectively, in 2326 total cases. The calculated mean SBI height was 377 m; EIs occurred at 1231, 2125, 2720, and 3125 m, respectively. This analysis was able to discriminate between locally controlled inversion layers and synoptic-dependent inversions and to identify their formation mechanisms. It was found that, in the presence of an SBI layer, the first EI layer formed 35.8% of the time under anticyclonic conditions at a mean height of 1249 m and 22% of the time in warm-air-advection situations at a mean height of 1049 m. The remaining 23.4% resulted from combined synoptic situations, and 18.8% were unclassified.


2003 ◽  
Vol 3 (6) ◽  
pp. 6147-6178 ◽  
Author(s):  
T. Anttila ◽  
V.-M. Kerminen ◽  
M. Kulmala ◽  
A. Laaksonen ◽  
C. O’Dowd

Abstract. A modelling study investigating the formation of organic particles from inorganic, thermodynamically stable clusters was carried out. A recently-developed theory, the so-called nano-Köhler theory, which describes a thermodynamic equilibrium between a nanometer-size cluster, water and water-soluble organic compound, was implemented in a dynamical model along with a treatment of the appropriate aerosol and gas-phase processes. The obtained results suggest that both gaseous sulphuric acid and organic vapours contribute to organic particle formation. The initial growth of freshly-nucleated clusters having a diameter around 1 nm is driven by condensation of gaseous sulphuric acid and by a lesser extent cluster self-coagulation. After the clusters have reached sizes of around 2 nm in diameter, low-volatile organic vapours start to condense spontaneously into the clusters, thereby accelerating their growth to detectable sizes. A shortage of gaseous sulphuric acid or organic vapours limit, or suppress altogether, the particle formation, since freshly-nucleated clusters are rapidly coagulated away by pre-existing particles. The obtained modelling results were applied to explaining the observed seasonal cycle in the number of aerosol formation events in a continental forest site.


2020 ◽  
Vol 20 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Miska Olin ◽  
Heino Kuuluvainen ◽  
Minna Aurela ◽  
Joni Kalliokoski ◽  
Niina Kuittinen ◽  
...  

Abstract. Elevated ambient concentrations of sub-3 nm particles (nanocluster aerosol, NCA) are generally related to atmospheric new particle formation events, usually linked with gaseous sulfuric acid (H2SO4) produced via photochemical oxidation of sulfur dioxide. According to our measurement results of H2SO4 and NCA concentrations, traffic density, and solar irradiance at an urban traffic site in Helsinki, Finland, the view of aerosol formation in traffic-influenced environments is updated by presenting two separate and independent pathways of traffic affecting the atmospheric NCA concentrations: by acting as a direct nanocluster source and by influencing the production of H2SO4. As traffic density in many areas is generally correlated with solar radiation, it is likely that the influence of traffic-related nanoclusters has been hidden in the diurnal variation and is thus underestimated because new particle formation events also follow the diurnal cycle of sunlight. Urban aerosol formation studies should, therefore, be updated to include the proposed formation mechanisms. The formation of H2SO4 in urban environments is here separated into two routes: primary H2SO4 is formed in hot vehicle exhaust and is converted rapidly to the particle phase; secondary H2SO4 results from the combined effect of emitted gaseous precursors and available solar radiation. A rough estimation demonstrates that ∼85 % of the total NCA and ∼68 % of the total H2SO4 in urban air at noontime at the measurement site are contributed by traffic, indicating the importance of traffic emissions.


2020 ◽  
Author(s):  
Xucheng He ◽  
Tuija Jokinen ◽  
Nina Sarnela ◽  
Lisa Beck ◽  
Heikki Junninen ◽  
...  

<p>Trace iodine vapours have a significant impact on atmospheric chemistry, influencing catalytic ozone destruction and the HO<sub>x</sub> / NO<sub>x</sub> cycles. Oxidized iodine species also form aerosols in coastal and polar regions (O’Dowd et al, 2002), playing a direct role in Earth’s radiation balance. It was recently shown that iodic acid (HIO<sub>3</sub>) has a significant impact on coastal new particle formation processes (Sipilä et al., 2016). However, neutral HIO<sub>3 </sub>molecules have only been measured in two sites (Sipilä et al., 2016).</p><p>In this study, a global observation of HIO<sub>3</sub> has been carried out in ten sites around the globe, including city sites, Arctic and Antarctica sites, a remote island site, a coastal site and a boreal forest site. While the existence of HIO<sub>3</sub> is unambiguously revealed in all of the sites, its concentration varies significantly among them. Dedicated laboratory experiments are required to examine the particle formation rates from iodine-containing species to be able to predict their global importance in particle formation, and further, in cloud condensation nuclei formation.</p><p> </p><p>O’Dowd, C. D. et al. Marine aerosol formation from biogenic iodine emissions. Nature <strong>417</strong>, 632–6 (2002)</p><p>Sipilä, M. et al. Molecular-scale evidence of aerosol particle formation via sequential addition of HIO<sub>3</sub>. Nature <strong>537</strong>, 532–534 (2016).</p><p> </p>


2020 ◽  
Author(s):  
Zhongshui Zou

<p><span>Turbulence over the mobile ocean surface has distinct properties compared to turbulence over land. This raises the issue of whether functions such as the turbulent kinetic energy (TKE) budget and Monin-Obukhov similarity theory (MOST) determined over land are directly applicable to ocean surfaces because of the existence of a wave boundary layer (the lower part of atmospheric boundary layer including effects of surface waves. We used the term “WBL” in this article for convenience), where the total stress can be separated into turbulent stress and wave coherent stress. Here the turbulent stress is defined as the stress generated by wind shear and buoyancy, and wave coherent stress accounts for the momentum transfer between ocean waves and atmosphere. In this study, applications of the turbulent kinetic energy (TKE) budget and the inertial dissipation method (IDM) in the context of the Monin-Obukhov similarity theory (MOST) within the WBL are examined. It was found that turbulent transport terms in the TKE budget should not be neglected when calculating the total stress under swell conditions. This was confirmed by observations made on a fixed platform. The results also suggested that turbulent stress, rather than total stress should be used when applying the MOST within the WBL. By combing the TKE budget and MOST, our study showed that the stress computed by the traditional IDM corresponds to turbulent stress rather than total stress. The swell wave coherent stress should be considered when applying the IDM to calculate the stress in the WBL.</span></p>


2020 ◽  
Author(s):  
Janne Lampilahti ◽  
Hanna Elina Manninen ◽  
Katri Leino ◽  
Riikka Väänänen ◽  
Antti Manninen ◽  
...  

Abstract. Recent studies have shown the importance of new particle formation (NPF) to global cloud concensation nuclei (CCN) production, as well as to air pollution in megacities. In addition to the necessary presence of low-volatility vapors that can form the new aerosol particles, both numerical and observational studies have shown that the dynamics of the planetary boundary layer (BL) plays an important role in NPF. Evidence from field observations suggests that roll vortices might be favorable for inducing NPF in a convective BL. However, direct observations and estimates on the potential importance of this phenomenon to the production of new aerosol particles are lacking. Here we show that rolls frequently induce NPF bursts along the horizontal circulations, and that the small clusters and particles originating from these bursts grow in size similar to particles typically ascribed to regional-scale atmospheric NPF. We outline a method to identify roll-induced NPF from measurements and, based on the collected data, estimate the impact of roll vortices on the overall aerosol particle production due to NPF at a boreal forest site (83 ± 34 % and 26 ± 8 % overall enhancement in particle formation for 3-nm and 10-nm particles respectively). We conclude that the formation of roll vortices should be taken into account when estimating particle number budgets in the atmospheric BL.


Sign in / Sign up

Export Citation Format

Share Document