scholarly journals Emissions of organic carbon and methane from petroleum and dairy operations in California's San Joaquin Valley

2014 ◽  
Vol 14 (10) ◽  
pp. 4955-4978 ◽  
Author(s):  
D. R. Gentner ◽  
T. B. Ford ◽  
A. Guha ◽  
K. Boulanger ◽  
J. Brioude ◽  
...  

Abstract. Petroleum and dairy operations are prominent sources of gas-phase organic compounds in California's San Joaquin Valley. It is essential to understand the emissions and air quality impacts of these relatively understudied sources, especially for oil/gas operations in light of increasing US production. Ground site measurements in Bakersfield and regional aircraft measurements of reactive gas-phase organic compounds and methane were part of the CalNex (California Research at the Nexus of Air Quality and Climate Change) project to determine the sources contributing to regional gas-phase organic carbon emissions. Using a combination of near-source and downwind data, we assess the composition and magnitude of emissions, and provide average source profiles. To examine the spatial distribution of emissions in the San Joaquin Valley, we developed a statistical modeling method using ground-based data and the FLEXPART-WRF transport and meteorological model. We present evidence for large sources of paraffinic hydrocarbons from petroleum operations and oxygenated compounds from dairy (and other cattle) operations. In addition to the small straight-chain alkanes typically associated with petroleum operations, we observed a wide range of branched and cyclic alkanes, most of which have limited previous in situ measurements or characterization in petroleum operation emissions. Observed dairy emissions were dominated by ethanol, methanol, acetic acid, and methane. Dairy operations were responsible for the vast majority of methane emissions in the San Joaquin Valley; observations of methane were well correlated with non-vehicular ethanol, and multiple assessments of the spatial distribution of emissions in the San Joaquin Valley highlight the dominance of dairy operations for methane emissions. The petroleum operations source profile was developed using the composition of non-methane hydrocarbons in unrefined natural gas associated with crude oil. The observed source profile is consistent with fugitive emissions of condensate during storage or processing of associated gas following extraction and methane separation. Aircraft observations of concentration hotspots near oil wells and dairies are consistent with the statistical source footprint determined via our FLEXPART-WRF-based modeling method and ground-based data. We quantitatively compared our observations at Bakersfield to the California Air Resources Board emission inventory and find consistency for relative emission rates of reactive organic gases between the aforementioned sources and motor vehicles in the region. We estimate that petroleum and dairy operations each comprised 22% of anthropogenic non-methane organic carbon at Bakersfield and were each responsible for 8–13% of potential precursors to ozone. Yet, their direct impacts as potential secondary organic aerosol (SOA) precursors were estimated to be minor for the source profiles observed in the San Joaquin Valley.

2013 ◽  
Vol 13 (10) ◽  
pp. 28225-28278 ◽  
Author(s):  
D. R. Gentner ◽  
T. B. Ford ◽  
A. Guha ◽  
K. Boulanger ◽  
J. Brioude ◽  
...  

Abstract. Petroleum and dairy operations are prominent sources of gas-phase organic compounds in California's San Joaquin Valley. Ground site measurements in Bakersfield and aircraft measurements of reactive gas-phase organic compounds were made in this region as part of the CalNex (California Research at the Nexus of Air Quality and Climate Change) project to determine the sources contributing to regional gas-phase organic carbon emissions. Using a combination of near-source and downwind data, we assess the composition and magnitude of emissions from these prominent sources that are relatively understudied compared to motor vehicles We also developed a statistical modeling method with the FLEXPART-WRF transport and meteorological model using ground-based data to assess the spatial distribution of emissions in the San Joaquin Valley. We present evidence for large sources of paraffinic hydrocarbons from petroleum extraction/processing operations and oxygenated compounds from dairy (and other cattle) operations. In addition to the small straight-chain alkanes typically associated with petroleum operations, we observed a wide range of branched and cyclic alkanes that have limited previous in situ measurements or characterization in emissions from petroleum operations. Observed dairy emissions were dominated by ethanol, methanol, and acetic acid, and methane. Dairy operations were responsible for the vast majority of methane emissions in the San Joaquin Valley; observations of methane were well-correlated with non-vehicular ethanol, and multiple assessments of the spatial distribution of emissions in the San Joaquin Valley highlight the dominance of dairy operations for methane emissions. The good agreement of the observed petroleum operations source profile with the measured composition of non-methane hydrocarbons in unrefined natural gas associated with crude oil suggests a fugitive emissions pathway during petroleum extraction, storage, or processing with negligible coincident methane emissions Aircraft observations of emission hotspots from operations at oil wells and dairies are consistent with the statistical source footprint determined via transport modeling and ground-based data. At Bakersfield, petroleum and dairy operations each comprised 22–23% of anthropogenic non-methane organic carbon and were each responsible for ~12% of potential precursors to ozone, but their direct impacts as potential SOA precursors were estimated to be minor. A comparison with the California Air Resources Board emission inventory supports the current relative emission rates of reactive organic gases from these sources in the region.


2011 ◽  
Vol 11 (1) ◽  
pp. 3461-3492
Author(s):  
S.-M. Li ◽  
J. Liggio ◽  
L. Graham ◽  
G. Lu ◽  
J. Brook ◽  
...  

Abstract. This paper presents the results of laboratory studies on the condensational uptake of gaseous organic compounds in the exhaust of a light-duty gasoline engine onto preexisting sulfate and nitrate seed particles. Significant condensation of the gaseous organic compounds in the exhaust occurs onto pre-existing inorganic particles on a time scale of 2–5 min. The amount of condensed organic mass (COM) is proportional to the seed particle mass, suggesting that the uptake is due to dissolution, not adsorption. The solubility decreases as a power function with increased dilution of the exhaust, ranging from 0.23 g/g at a dilution ratio of 81, to 0.025 g/g at a dilution ratio of 2230. The solubility increases nonlinearly with increasing concentration of the total hydrocarbons in the gas phase (THC), rising from 0.12 g/g to 0.26 g/g for a CTHC increase of 1 to 18 μg m−3, suggesting that more organics are partitioned into the particles at higher gas phase concentrations. In terms of gas-particle partitioning, the condensational uptake of THC gases in gasoline engine exhaust can account for up to 30% of the total gas+particle THC. By incorporating the present findings, regional air quality modelling results suggest that the condensational uptake of THC onto sulfate particles alone can be comparable to the primary particle mass under moderately polluted ambient conditions. These findings are important for modelling and regulating the air quality impacts of gasoline vehicular emissions.


2017 ◽  
Vol 17 (12) ◽  
pp. 7733-7756 ◽  
Author(s):  
Yu Zhao ◽  
Pan Mao ◽  
Yaduan Zhou ◽  
Yang Yang ◽  
Jie Zhang ◽  
...  

Abstract. Non-methane volatile organic compounds (NMVOCs) are the key precursors of ozone (O3) and secondary organic aerosol (SOA) formation. Accurate estimation of their emissions plays a crucial role in air quality simulation and policy making. We developed a high-resolution anthropogenic NMVOC emission inventory for Jiangsu in eastern China from 2005 to 2014, based on detailed information of individual local sources and field measurements of source profiles of the chemical industry. A total of 56 NMVOCs samples were collected in nine chemical plants and were then analyzed with a gas chromatography – mass spectrometry system (GC-MS). Source profiles of stack emissions from synthetic rubber, acetate fiber, polyether, vinyl acetate and ethylene production, and those of fugitive emissions from ethylene, butanol and octanol, propylene epoxide, polyethylene and glycol production were obtained. Various manufacturing technologies and raw materials led to discrepancies in source profiles between our domestic field tests and foreign results for synthetic rubber and ethylene production. The provincial NMVOC emissions were calculated to increase from 1774 Gg in 2005 to 2507 Gg in 2014, and relatively large emission densities were found in cities along the Yangtze River with developed economies and industries. The estimates were larger than those from most other available inventories, due mainly to the complete inclusion of emission sources and to the elevated activity levels from plant-by-plant investigation in this work. Industrial processes and solvent use were the largest contributing sectors, and their emissions were estimated to increase, respectively, from 461 to 958 and from 38 to 966 Gg. Alkanes, aromatics and oxygenated VOCs (OVOCs) were the most important species, accounting for 25.9–29.9, 20.8–23.2 and 18.2–21.0 % to annual total emissions, respectively. Quantified with a Monte Carlo simulation, the uncertainties of annual NMVOC emissions vary slightly through the years, and the result for 2014 was −41 to +93 %, expressed as 95 % confidence intervals (CI). Reduced uncertainty was achieved compared to previous national and regional inventories, attributed partly to the detailed classification of emission sources and to the use of information at plant level in this work. Discrepancies in emission estimation were explored for the chemical and refinery sectors with various data sources and methods. Compared with the Multi-resolution Emission Inventory for China (MEIC), the spatial distribution of emissions in this work were more influenced by the locations of large point sources, and smaller emissions were found in urban area for developed cities in southern Jiangsu. In addition, discrepancies were found between this work and MEIC in the speciation of NMVOC emissions under the atmospheric chemistry mechanisms CB05 and SAPRC99. The difference in species OLE1 resulted mainly from the updated source profile of building paint use and the differences in other species from the varied sector contributions to emissions in the two inventories. The Community Multi-scale Air Quality (CMAQ) model simulation was applied to evaluate the two inventories, and better performance (indicated by daily 1 h maximum O3 concentrations in Nanjing) were found for January, April and October 2012 when the provincial inventory was used.


2005 ◽  
Vol 5 (9) ◽  
pp. 2497-2517 ◽  
Author(s):  
B. Aumont ◽  
S. Szopa ◽  
S. Madronich

Abstract. Organic compounds emitted in the atmosphere are oxidized in complex reaction sequences that produce a myriad of intermediates. Although the cumulative importance of these organic intermediates is widely acknowledged, there is still a critical lack of information concerning the detailed composition of the highly functionalized secondary organics in the gas and condensed phases. The evaluation of their impacts on pollution episodes, climate, and the tropospheric oxidizing capacity requires modelling tools that track the identity and reactivity of organic carbon in the various phases down to the ultimate oxidation products, CO and CO2. However, a fully detailed representation of the atmospheric transformations of organic compounds involves a very large number of intermediate species, far in excess of the number that can be reasonably written manually. This paper describes (1) the development of a data processing tool to generate the explicit gas-phase oxidation schemes of acyclic hydrocarbons and their oxidation products under tropospheric conditions and (2) the protocol used to select the reaction products and the rate constants. Results are presented using the fully explicit oxidation schemes generated for two test species: n-heptane and isoprene. Comparisons with well-established mechanisms were performed to evaluate these generated schemes. Some preliminary results describing the gradual change of organic carbon during the oxidation of a given parent compound are presented.


2013 ◽  
Vol 13 (11) ◽  
pp. 28343-28393 ◽  
Author(s):  
D. R. Gentner ◽  
E. Ormeño ◽  
S. Fares ◽  
T. B. Ford ◽  
R. Weber ◽  
...  

Abstract. Agriculture comprises a substantial fraction of land cover in many regions of the world, including California's San Joaquin Valley, which is out of compliance with state and federal standards for tropospheric ozone and particulate matter (PM2.5). Emissions from vegetation and other biogenic and anthropogenic sources react in the atmosphere to produce ozone and secondary organic aerosol, which comprises a substantial fraction of PM2.5. Using data from three measurement campaigns, we examine emissions of reactive gas-phase organic carbon from agricultural crops and their potential to impact regional air quality relative to anthropogenic emissions in California's San Joaquin Valley. Emission rates for a suite of biogenic terpenoid compounds were measured in a greenhouse for 25 representative crops from California in 2008, and ambient measurements of terpenoids and other biogenic compounds in the volatile and intermediate-volatility organic compound range were made over an orange orchard in a rural area of the San Joaquin Valley during two seasons in 2010: summer and spring flowering. When accounting for both emissions of reactive precursors and the deposition of ozone to an orange orchard, the net effect of the orange trees is a net source of ozone in the springtime during flowering, and relatively neutral for most of the summer until the fall when it becomes a sink. Flowering was a major emission event and caused a large increase in emissions including a suite of compounds that had not been measured in the atmosphere before. Such biogenic emission events need to be better parameterized in models as they have significant potential to impact regional air quality since emissions increase by an order of magnitude. In regions like the San Joaquin Valley, the mass of biogenic emissions from agricultural crops during the summer (without flowering) and the potential ozone and secondary organic aerosol formation from these emissions are on the same order as anthropogenic emissions from motor vehicles and must be considered in air quality models and secondary pollution control strategies.


2011 ◽  
Vol 11 (19) ◽  
pp. 10157-10171 ◽  
Author(s):  
S.-M. Li ◽  
J. Liggio ◽  
L. Graham ◽  
G. Lu ◽  
J. Brook ◽  
...  

Abstract. This paper presents the results of laboratory studies on the condensational uptake of gaseous organic compounds in the exhaust of a light-duty gasoline engine onto preexisting sulfate and nitrate seed particles. Significant condensation of the gaseous organic compounds in the exhaust occurs onto these inorganic particles on a time scale of 2–5 min. The amount of condensed organic mass (COM) is proportional to the seed particle mass, suggesting that the uptake is due to dissolution determined by the equilibrium partitioning between gas phase and particles, not adsorption. The amount of dissolution in unit seed mass, S, decreases as a power function with increased dilution of the exhaust, ranging from 0.23 g g−1 at a dilution ratio of 81, to 0.025 g g−1 at a dilution ratio of 2230. It increases nonlinearly with increasing concentration of the total hydrocarbons in the gas phase (THC), rising from 0.12 g g−1 to 0.26 g g−1 for a CTHC increase of 1 to 18 μg m−3, suggesting that more organics are partitioned into the particles at higher gas phase concentrations. In terms of gas-particle partitioning, the condensational uptake of THC gases in gasoline engine exhaust can account for up to 30% of the total gas + particle THC. The organic mass spectrum of COM has the largest fragment at m/z 44, with mass ratios of mass fragments 43/44 and 57/44 at 0.59 and 2.91, much lower than those reported for gasoline engine primary organic aerosols. The mass fragment 44/total organic mass ratio of 0.097 indicates that COM contains large oxygenated components. By incorporating the present findings, regional air quality modelling results suggest that the condensational uptake of THC onto sulfate particles alone can be comparable to the primary particle mass under moderately polluted ambient conditions. These findings are important for modelling and regulating the air quality impacts of gasoline vehicular emissions.


2018 ◽  
Vol 18 (8) ◽  
pp. 5391-5413 ◽  
Author(s):  
Peeyush Khare ◽  
Drew R. Gentner

Abstract. Decades of policy in developed regions has successfully reduced total anthropogenic emissions of gas-phase organic compounds, especially volatile organic compounds (VOCs), with an intentional, sustained focus on motor vehicles and other combustion-related sources. We examine potential secondary organic aerosol (SOA) and ozone formation in our case study megacity (Los Angeles) and demonstrate that non-combustion-related sources now contribute a major fraction of SOA and ozone precursors. Thus, they warrant greater attention beyond indoor environments to resolve large uncertainties in their emissions, oxidation chemistry, and outdoor air quality impacts in cities worldwide. We constrain the magnitude and chemical composition of emissions via several bottom-up approaches using chemical analyses of products, emissions inventory assessments, theoretical calculations of emission timescales, and a survey of consumer product material safety datasheets. We demonstrate that the chemical composition of emissions from consumer products as well as commercial and industrial products, processes, and materials is diverse across and within source subcategories. This leads to wide ranges of SOA and ozone formation potentials that rival other prominent sources, such as motor vehicles. With emission timescales from minutes to years, emission rates and source profiles need to be included, updated, and/or validated in emissions inventories with expected regional and national variability. In particular, intermediate-volatility and semi-volatile organic compounds (IVOCs and SVOCs) are key precursors to SOA, but are excluded or poorly represented in emissions inventories and exempt from emissions targets. We present an expanded framework for classifying VOC, IVOC, and SVOC emissions from this diverse array of sources that emphasizes a life cycle approach over longer timescales and three emission pathways that extend beyond the short-term evaporation of VOCs: (1) solvent evaporation, (2) solute off-gassing, and (3) volatilization of degradation by-products. Furthermore, we find that ambient SOA formed from these non-combustion-related emissions could be misattributed to fossil fuel combustion due to the isotopic signature of their petroleum-based feedstocks.


2005 ◽  
Vol 5 (1) ◽  
pp. 703-754 ◽  
Author(s):  
B. Aumont ◽  
S. Szopa ◽  
S. Madronich

Abstract. Organic compounds emitted in the atmosphere are oxidized in complex reaction sequences that produce a myriad of intermediates. Although the cumulative importance of these organic intermediates is widely acknowledged, there is still a critical lack of information concerning the detailed composition of the highly functionalized secondary organics in the gas and condensed phases. The evaluation of their impacts on pollution episodes, climate, and the tropospheric oxidizing capacity requires modelling tools that track the identity and reactivity of organic carbon in the various phases down to the ultimate oxidation products, CO and CO2. However, a fully detailed representation of the atmospheric transformations of organic compounds involves a very large number of intermediate species, far in excess of the number that can be reasonably written manually. This paper describes (1) the development of a data processing tool to generate the explicit gas-phase oxidation schemes of organic compounds under tropospheric conditions and (2) the protocol used to select the reaction products and the rate constants. Results are presented using the fully explicit oxidation schemes generated for two test species: n-heptane and isoprene. Comparisons with well-established mechanisms were performed to evaluate these generated schemes. Some preliminary results describing the gradual change of organic carbon during the oxidation of a given parent compound are presented.


2014 ◽  
Vol 14 (11) ◽  
pp. 5393-5413 ◽  
Author(s):  
D. R. Gentner ◽  
E. Ormeño ◽  
S. Fares ◽  
T. B. Ford ◽  
R. Weber ◽  
...  

Abstract. Agriculture comprises a substantial, and increasing, fraction of land use in many regions of the world. Emissions from agricultural vegetation and other biogenic and anthropogenic sources react in the atmosphere to produce ozone and secondary organic aerosol, which comprises a substantial fraction of particulate matter (PM2.5). Using data from three measurement campaigns, we examine the magnitude and composition of reactive gas-phase organic carbon emissions from agricultural crops and their potential to impact regional air quality relative to anthropogenic emissions from motor vehicles in California's San Joaquin Valley, which is out of compliance with state and federal standards for tropospheric ozone PM2.5. Emission rates for a suite of terpenoid compounds were measured in a greenhouse for 25 representative crops from California in 2008. Ambient measurements of terpenoids and other biogenic compounds in the volatile and intermediate-volatility organic compound ranges were made in the urban area of Bakersfield and over an orange orchard in a rural area of the San Joaquin Valley during two 2010 seasons: summer and spring flowering. We combined measurements from the orchard site with ozone modeling methods to assess the net effect of the orange trees on regional ozone. When accounting for both emissions of reactive precursors and the deposition of ozone to the orchard, the orange trees are a net source of ozone in the springtime during flowering, and relatively neutral for most of the summer until the fall, when it becomes a sink. Flowering was a major emission event and caused a large increase in emissions including a suite of compounds that had not been measured in the atmosphere before. Such biogenic emission events need to be better parameterized in models as they have significant potential to impact regional air quality since emissions increase by several factors to over an order of magnitude. In regions like the San Joaquin Valley, the mass of biogenic emissions from agricultural crops during the summer (without flowering) and the potential ozone and secondary organic aerosol formation from these emissions are on the same order as anthropogenic emissions from motor vehicles and must be considered in air quality models and secondary pollution control strategies.


Sign in / Sign up

Export Citation Format

Share Document