scholarly journals Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime

2016 ◽  
Vol 16 (2) ◽  
pp. 1123-1138 ◽  
Author(s):  
Z. J. Wu ◽  
J. Zheng ◽  
D. J. Shang ◽  
Z. F. Du ◽  
Y. S. Wu ◽  
...  

Abstract. Simultaneous measurements of particle number size distribution, particle hygroscopic properties, and size-resolved chemical composition were made during the summer of 2014 in Beijing, China. During the measurement period, the mean hygroscopicity parameters (κs) of 50, 100, 150, 200, and 250 nm particles were respectively 0.16  ±  0.07, 0.19  ±  0.06, 0.22  ±  0.06, 0.26  ±  0.07, and 0.28  ±  0.10, showing an increasing trend with increasing particle size. Such size dependency of particle hygroscopicity was similar to that of the inorganic mass fraction in PM1. The hydrophilic mode (hygroscopic growth factor, HGF  >  1.2) was more prominent in growth factor probability density distributions and its dominance of hydrophilic mode became more pronounced with increasing particle size. When PM2.5 mass concentration was greater than 50 μg m−3, the fractions of the hydrophilic mode for 150, 250, and 350 nm particles increased towards 1 as PM2.5 mass concentration increased. This indicates that aged particles dominated during severe pollution periods in the atmosphere of Beijing. Particle hygroscopic growth can be well predicted using high-time-resolution size-resolved chemical composition derived from aerosol mass spectrometer (AMS) measurements using the Zdanovskii–Stokes–Robinson (ZSR) mixing rule. The organic hygroscopicity parameter (κorg) showed a positive correlation with the oxygen to carbon ratio. During the new particle formation event associated with strongly active photochemistry, the hygroscopic growth factor or κ of newly formed particles is greater than for particles with the same sizes not during new particle formation (NPF) periods. A quick transformation from external mixture to internal mixture for pre-existing particles (for example, 250 nm particles) was observed. Such transformations may modify the state of the mixture of pre-existing particles and thus modify properties such as the light absorption coefficient and cloud condensation nuclei activation.

2015 ◽  
Vol 15 (8) ◽  
pp. 11495-11524 ◽  
Author(s):  
Z. J. Wu ◽  
J. Zheng ◽  
D. J. Shang ◽  
Z. F. Du ◽  
Y. S. Wu ◽  
...  

Abstract. Simultaneous measurements of particle number size distribution, particle hygroscopic properties, and size-resolved chemical composition were made during the summer of 2014 in Beijing, China. During the measurement period, the median hygroscopicity parameters (κ) of 50, 100, 150, 200, and 250 nm particles are respectively 0.15, 0.19, 0.22, 0.27, and 0.29, showing an increasing trend with increasing particle size. When PM2.5 mass concentration is greater than 50 μg m−3, the fractions of the hydrophilic mode for 150, 250, 350 nm particles increased towards 1 as PM2.5 mass concentration increased. This indicates that aged particles dominated during severe pollution periods in the atmosphere of Beijing. Particle hygroscopic growth can be well predicted using high time-resolution size-resolved chemical composition derived from AMS measurement on a basis of ZSR mixing rule. An empirical relationship between κ of organic fraction (κorg) and oxygen to carbon ratio (O : C) (κorg= 0.08·O : C+0.02) is obtained. During new particle formation event associating with strongly active photochemistry, the hygroscopic growth factor or κ of newly formed particles is greater than for particle with the same sizes during non-NPF periods. A quick transformation from external mixture to internal mixture for pre-existing particles (for example 250 nm particle) was observed. Such transformations can modify the state of mixture of pre-exiting particles and thus modify properties such as the light absorption coefficient and cloud condensation nuclei activation.


2007 ◽  
Vol 7 (1) ◽  
pp. 211-222 ◽  
Author(s):  
M. Ehn ◽  
T. Petäjä ◽  
H. Aufmhoff ◽  
P. Aalto ◽  
K. Hämeri ◽  
...  

Abstract. The hygroscopic growth of aerosol particles present in a boreal forest was measured at a relative humidity of 88%. Simultaneously the gas phase concentration of sulfuric acid, a very hygroscopic compound, was monitored. The focus was mainly on days with new particle formation by nucleation. The measured hygroscopic growth factors (GF) correlated positively with the gaseous phase sulfuric acid concentrations. The smaller the particles, the stronger the correlation, with r=0.20 for 50 nm and r=0.50 for 10 nm particles. The increase in GF due to condensing sulfuric acid is expected to be larger for particles with initially smaller masses. During new particle formation, the changes in solubility of the new particles were calculated during their growth to Aitken mode sizes. As the modal diameter increased, the solubility of the particles decreased. This indicated that the initial particle growth was due to more hygroscopic compounds, whereas the later growth during the evening and night was mainly caused by less hygroscopic or even hydrophobic compounds. For all the measured sizes, a diurnal variation in GF was observed both during days with and without particle formation. The GF was lowest at around midnight, with a mean value of 1.12–1.24 depending on particle size and if new particle formation occurred during the day, and increased to 1.25–1.34 around noon. This can be tentatively explained by day- and nighttime gas-phase chemistry; different vapors will be present depending on the time of day, and through condensation these compounds will alter the hygroscopic properties of the particles in different ways.


2020 ◽  
Vol 20 (10) ◽  
pp. 5911-5922 ◽  
Author(s):  
Hing Cho Cheung ◽  
Charles Chung-Kuang Chou ◽  
Celine Siu Lan Lee ◽  
Wei-Chen Kuo ◽  
Shuenn-Chin Chang

Abstract. The chemical composition of fine particulate matter (PM2.5), the size distribution and number concentration of aerosol particles (NCN), and the number concentration of cloud condensation nuclei (NCCN) were measured at the northern tip of Taiwan during an intensive observation experiment from April 2017 to March 2018. The parameters of aerosol hygroscopicity (i.e., activation ratio, activation diameter and kappa of CCN) were retrieved from the measurements. Significant variations were found in the hygroscopicity of aerosols (kappa – κ – of 0.18–0.56, for water vapor supersaturation – SS – of 0.12 %–0.80 %), which were subject to various pollution sources, including aged air pollutants originating in eastern and northern China and transported by the Asian continental outflows and fresh particles emitted from local sources and distributed by land–sea breeze circulations as well as produced by processes of new particle formation (NPF). Cluster analysis was applied to the back trajectories of air masses to investigate their respective source regions. The results showed that aerosols associated with Asian continental outflows were characterized by lower NCN and NCCN values and by higher kappa values of CCN, whereas higher NCN and NCCN values with lower kappa values of CCN were observed in the aerosols associated with local air masses. Besides, it was revealed that the kappa value of CCN exhibited a decrease during the early stage of an event of new particle formation, which turned to an increasing trend over the later period. The distinct features in the hygroscopicity of aerosols were found to be consistent with the characteristics in the chemical composition of PM2.5. This study has depicted a clear seasonal characteristic of hygroscopicity and CCN activity under the influence of a complex mixture of pollutants from different regional and/or local pollution sources. Nevertheless, the mixing state and chemical composition of the aerosols critically influence the aerosol hygroscopicity, and further investigations are necessary to elucidate the atmospheric processing involved in the CCN activation in coastal areas.


2013 ◽  
Vol 13 (3) ◽  
pp. 5805-5841 ◽  
Author(s):  
S. Bezantakos ◽  
K. Barmpounis ◽  
M. Giamarelou ◽  
E. Bossioli ◽  
M. Tombrou ◽  
...  

Abstract. The chemical composition and water uptake characteristics of sub-micrometer atmospheric particles in the region of the Aegean Sea were measured between 25 August and 11 September 2011 in the framework of the Aegean-Game campaign. High time-resolution measurements of the chemical composition of the particles were conducted using an airborne compact Time-Of-Flight Aerosol Mass Spectrometer (cTOF-AMS). These measurements involved two flights from the island of Crete to the island of Lemnos and back. A Hygroscopic Tandem Differential Mobility Analyzer (HTDMA) located on the island of Lemnos was used to measure the ability of the particles to take up water. The HTDMA measurements showed that the particles were internally mixed, having hygroscopic growth factors that ranged from 1.00 to 1.59 when exposed to 85% relative humidity. When the aircraft flew near the ground station on Lemnos, the cTOF-AMS measurements showed that the organic volume fraction of the particles ranged from 43 to 56%. These measurements corroborate the range of hygroscopic growth factors measured by the HTDMA during that time. Good closure between HTDMA and cTOF-AMS measurements was achieved when assuming that the organic species were hydrophobic and had an average density that corresponds to aged organic species. Using the results from the closure study, the cTOF-AMS measurements were employed to determine a representative aerosol hygroscopic parameter κmix for the whole path of the two flights. Calculated κmix values ranged from 0.17 to 1.03 during the first flight and from 0.15 to 0.93 during the second flight. Air masses of different origin as determined by back trajectory calculations can explain the spatial variation in the chemical composition and κmix values of the particles observed in the region.


2019 ◽  
Author(s):  
Hing Cho Cheung ◽  
Charles C.-K. Chou ◽  
Celine S. L. Lee ◽  
Wei-Chen Kuo ◽  
Shuenn-Chin Chang

Abstract. The chemical composition of fine particulate matters (PM2.5), the size distribution and number concentration of aerosol particles (NCN) and the number concentration of cloud condensation nuclei (NCCN) were measured at the northern tip of Taiwan Island during a campaign from April 2017 to March 2018. The parameters of aerosol hygroscopicity (i.e. activation ratio, activation diameter and kappa) were retrieved from the measurements. Significant variations were found in the hygroscopicity of aerosols, which were suggested be subject to various pollution sources, including aged air pollutants originating in the eastern/northern China and transported on the Asian continental outflows, fresh particles emitted from local sources and distributed by land-sea breeze circulations as well as produced by new particle formation (NPF) processes. Cluster analysis was applied to the backward trajectories of air masses to investigate their respective source regions. The results showed that the aerosols associated with Asian continental outflows were characterized with higher kappa values, whereas higher NCCN and NCN with lower kappa values were found for aerosols in local air masses. The distinct features in hygroscopicity were consistent with the characteristics in the chemical composition of PM2.5. Moreover, this study revealed that the nucleation mode particles from NPF could have participated in the enhancement of CCN activity, most likely by coagulating with sub-CCN particles, although the freshly produced particles were not favored for CCN activation due to their smaller sizes. Thus, the results of this study suggested that the NPF coupling with coagulation processes can significantly increase the NCCN in atmosphere.


2013 ◽  
Vol 30 (6) ◽  
pp. 1136-1148 ◽  
Author(s):  
Haobo Tan ◽  
Hanbing Xu ◽  
Qilin Wan ◽  
Fei Li ◽  
Xuejiao Deng ◽  
...  

Abstract The hygroscopic properties of aerosols have a significant impact on aerosol particle number size distributions (PNSD), formation of cloud condensation nuclei, climate forcing, and atmospheric visibility, as well as human health. To allow for the observation of the hygroscopic growth of aerosols with long-term accuracy, an unattended multifunctional hygroscopicity-tandem differential mobility analyzer (H-TDMA) system was designed and built by the Institute of Tropical and Marine Meteorology (ITMM), China Meteorological Administration (CMA), in Guangzhou, China. The system is capable of measuring dry and wet PNSD, hygroscopic growth factor by particle size, and mixing states. This article describes in detail the working principles, components, and calibration methods of the system. Standard polystyrene latex (PSL) spheres with five different diameters were chosen to test the system’s precision and accuracy of particle size measurement. Ammonium sulfate was used to test the hygroscopic response of the system for accurate growth factor measurement. The test results show that the deviation of the growth factor measured by the system is within a scope of −0.01 to −0.03 compared to Köhler theoretical curves. Results of temperature and humidity control performance tests indicate that the system is robust. An internal temperature gradient of less than 0.2 K for a second differential mobility analyzer (DMA2) makes it possible to reach a set-point relative humidity (RH) value of 90% and with a standard deviation of ±0.44%, sufficient for unattended field observation.


2014 ◽  
Vol 14 (5) ◽  
pp. 6759-6802
Author(s):  
H. Holmgren ◽  
K. Sellegri ◽  
M. Hervo ◽  
C. Rose ◽  
E. Freney ◽  
...  

Abstract. A Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) was used to evaluate the hygroscopic properties of aerosol particles measured at the Puy de Dôme research station in central France from September 2008 to December 2012. This high-altitude site is ideally situated to allow for both the upper part of the planetary boundary layer and the lower free troposphere to be sampled. The aim of the study is to investigate both the influence of year-to-year, seasonal, and diurnal cycles, as well as the influence of air mass type on particle hygroscopicity and mixing state. Results show that particle hygroscopicity increases with particle size and depends both on air mass type and on season. Average growth factor values are lowest in winter (1.21 ± 0.13, 1.23 ± 0.18 and 1.38 ± 0.25 for 25, 50 and 165 nm particles, respectively) and highest in autumn (1.27 ± 0.11, 1.32 ± 0.12 and 1.49 ± 0.15 for 25, 50 and 165 nm particles, respectively). Particles are generally more hygroscopic at night than during the day. The seasonal and diurnal variations are likely to be strongly influenced by boundary layer dynamics. Furthermore, particles originating from oceanic and continental regions tend to be more hygroscopic than those measured in African and local air masses. The high hygroscopicity of marine aerosol may be explained by large proportions of inorganic aerosol and sea salts, and it is speculated that continental particles are more hygroscopic than local and African ones due to ageing of fresh combustion aerosol. Aerosol measured at the Puy de Dôme display a high degree of external mixing, and hygroscopic growth spectra can be divided into three different hygroscopic modes: a less hygroscopic mode (GF < 1.3), a hygroscopic mode (GF 1.3–1.7) and a more hygroscopic mode (GF > 1.7). The majority of particles measured can be classified as being in either the less hygroscopic mode or the hygroscopic mode, and only few of them have more hygroscopic properties. The degree of external mixing, evaluated as the fraction of time when the aerosol is found with two or more populations with different hygroscopic properties, is found to increase with particle size (average yearly values are 22, 33 and 49% for 25, 50, and 165 nm particles, respectively). The degree of external mixing is more sensitive to season than to air mass type, and it is higher in the cold seasons than in the warm seasons. This study gathers the results from one of the longest data sets of hygroscopic growth factor measurements to date, allowing a statistically relevant hygroscopic growth parameterization to be determined as a function of both air mass type and season.


2020 ◽  
Author(s):  
Nikolay Romanov ◽  
Alexey Paley ◽  
Yuri Andreev ◽  
Sergey Dubtsov ◽  
Oleg Ozols ◽  
...  

Abstract. The paper reports on an investigation of nanometre-sized new particles formation (NPF) in aerosol-free outdoor air. This phenomenon was observed after filling of Large Aerosol Chamber (LAC) RPA Typhoon with the volume of 3200 m3 with outdoor air, passed through HEPA 13 class filter (H13). During the summer-autumn period of 2018, even in the full darkness and in presence ionizing radiation only in the shape of secondary galactic cosmic rays, new particle formation with the particle size greater than 15 nm starts 0.5–1 hour after the end of LAC filling. During the 2018–2019 winter periods the NPF event was not observed once only. Approximately one day after NPF narrow bell-shaped spectra with number concentration up to 104 cm−3 and mass concentration up to 0.6 µg per m3 are formed. During the next five or more days, these size distributions evolve due to coagulation, while their asymptotic shape remains constant with relative breadth σc ≈ 0.28, and relative asymmetry ras ≈ 2 (ras = skewness/σc). The value ras ≈ 2 defines the analytical description of the size distribution as the gamma-distribution. During additional purification of newly formed particles with the inner H13 filter, aerosol particles concentration in LAC decreases down to a few particles per cm3. This concentration remained constant for more than a week. This demonstrates that new aerosol particles are formed by homogeneous gas-to-particle conversion of gaseous precursors, which passed through the external H13 filter. The mass concentration of newly formed particles depends on the concentration of precursors. It was found that after filling LAC with outdoor unfiltered air, approximately after 10 hours the left-hand side of aerosol particle size distribution below 15 nm disappears, and after several days there forms an asymptotic bell-shaped size spectrum with σc ≈ 0.4–0.5 and ras = 2–3. The modal diameter becomes about 150 nm after five days, while the size distribution greater than 200 nm remains unchanged. This allows concluding that aerosol particles greater than 200 nm have a life-time of more than five days, while particles smaller than 15 nm, not more than five hours. The observed regularities of NPF and pre-existing aerosol spectra evolution may contribute significantly to understanding the processes of the formation of atmospheric aerosols, which are responsible for cloud and precipitation formation. They also should be considered during the design of purification methods for facilities and living spaces. During the investigation of size distribution evolution of aerosol particles generated by the spraying of tap water, it was found that this aerosol particles size distribution transforms from a power law to a bell-shaped distribution in five days with σc ≈ 0.4 and ras ≈ 2. These results may be used for the development of aerosol evolution models.


2009 ◽  
Vol 9 (18) ◽  
pp. 6865-6880 ◽  
Author(s):  
J. Meier ◽  
B. Wehner ◽  
A. Massling ◽  
W. Birmili ◽  
A. Nowak ◽  
...  

Abstract. The hygroscopic properties of atmospheric aerosols are highly relevant for the quantification of radiative effects in the atmosphere, but also of interest for the assessment of particle health effects upon inhalation. This article reports measurements of aerosol particle hygroscopicity in the highly polluted urban atmosphere of Beijing, China in January 2005. The meteorological conditions corresponded to a relatively cold and dry atmosphere. Three different methods were used: 1) A combination of Humidifying Differential Mobility Particle Sizer (H-DMPS) and Twin Differential Mobility Particle Sizer (TDMPS) measurements, 2) A Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA), and 3) A simplistic solubility model fed by chemical particle composition determined from Micro Orifice Uniform Deposit Impactor (MOUDI) samples. From the H-DMPS and TDMPS particle number size distributions, a size-resolved descriptive hygroscopic growth factor (DHGF) was determined for the relative humidities (RH) 55%, 77% and 90%, and particle diameters between 30 and 400 nm. In Beijing, the highest DHGFs were observed for accumulation mode particles, 1.40 (±0.03) at 90% RH. DHGF decreased significantly with particle size, reaching 1.04 (±0.15) at 30 nm. H-TDMA data also suggest a decrease in growth factor towards the biggest particles investigated (350 nm), associated with an increasing fraction of nearly hydrophobic particles. The agreement between the H-DMPS/TDMPS and H-TDMA methods was satisfactory in the accumulation mode size range (100–400 nm). In the Aitken mode range (<100 nm), the H-DMPS/TDMPS method yielded growth factors lower by up to 0.1 at 90% RH. The application of the solubility model based on measured chemical composition clearly reproduced the size-dependent trend in hygroscopic particle growth observed by the other methods. In the case of aerosol dominated by inorganic ions, the composition-derived growth factors tended to agree (± 0.05) or underestimate (up to 0.1) the values measured by the other two methods. In the case of aerosol dominated by organics, the reverse was true, with an overestimation of up to 0.2. The results shed light on the experimental and methodological uncertainties that are still connected with the determination of hygroscopic growth factors.


2010 ◽  
Vol 10 (9) ◽  
pp. 4253-4271 ◽  
Author(s):  
E. Asmi ◽  
A. Frey ◽  
A. Virkkula ◽  
M. Ehn ◽  
H. E. Manninen ◽  
...  

Abstract. The Antarctic near-coastal sub-micrometre aerosol particle features in summer were characterised based on measured data on aerosol hygroscopicity, size distributions, volatility and chemical ion and organic carbon mass concentrations. Hysplit model was used to calculate the history of the air masses to predict the particle origin. Additional measurements of meteorological parameters were utilised. The hygroscopic properties of particles mostly resembled those of marine aerosols. The measurements took place at 130 km from the Southern Ocean, which was the most significant factor affecting the particle properties. This is explained by the lack of additional sources on the continent of Antarctica. The Southern Ocean was thus a likely source of the particles and nucleating and condensing vapours. The particles were very hygroscopic (HGF 1.75 at 90 nm) and very volatile. Most of the sub-100 nm particle volume volatilised below 100 °C. Based on chemical data, particle hygroscopic and volatile properties were explained by a large fraction of non-neutralised sulphuric acid together with organic material. The hygroscopic growth factors assessed from chemical data were similar to measured. Hygroscopicity was higher in dry continental air masses compared with the moist marine air masses. This was explained by the aging of the marine organic species and lower methanesulphonic acid volume fraction together with the changes in the inorganic aerosol chemistry as the aerosol had travelled long time over the continental Antarctica. Special focus was directed in detailed examination of the observed new particle formation events. Indications of the preference of negative over positive ions in nucleation could be detected. However, in a detailed case study, the neutral particles dominated the particle formation process. Freshly nucleated particles had the smallest hygroscopic growth factors, which increased subsequent to particle aging.


Sign in / Sign up

Export Citation Format

Share Document