scholarly journals Saharan dust contribution to the Caribbean summertime boundary layer – a lidar study during SALTRACE

2016 ◽  
Vol 16 (18) ◽  
pp. 11535-11546 ◽  
Author(s):  
Silke Groß ◽  
Josef Gasteiger ◽  
Volker Freudenthaler ◽  
Thomas Müller ◽  
Daniel Sauer ◽  
...  

Abstract. Dual-wavelength lidar measurements with the small lidar system POLIS of the Ludwig-Maximilians-Universität München were performed during the SALTRACE experiment at Barbados in June and July 2013. Based on high-accuracy measurements of the linear depolarization ratio down to about 200 m above ground level, the dust volume fraction and the dust mass concentration within the convective marine boundary layer can be derived. Additional information from radiosonde launches at the ground-based measurement site provide independent information on the convective marine boundary layer height and the meteorological situation within the convective marine boundary layer. We investigate the lidar-derived optical properties, the lidar ratio and the particle linear depolarization ratio at 355 and 532 nm and find mean values of 0.04 (SD 0.03) and 0.05 (SD 0.04) at 355 and 532 nm, respectively, for the particle linear depolarization ratio, and (26 ± 5) sr for the lidar ratio at 355 and 532 nm. For the concentration of dust in the convective marine boundary layer we find that most values were between 20 and 50 µgm−3. On most days the dust contribution to total aerosol volume was about 30–40 %. Comparing the dust contribution to the column-integrated sun-photometer measurements we see a correlation between high dust contribution, high total aerosol optical depth and a low Angström exponent, and of low dust contribution with low total aerosol optical depth.

2016 ◽  
Author(s):  
Silke Groß ◽  
Josef Gasteiger ◽  
Volker Freudenthaler ◽  
Thomas Müller ◽  
Daniel Sauer ◽  
...  

Abstract. Dual-wavelength lidar measurements with the small lidar system POLIS of the Ludwig-Maximilians-Universität München were performed during the SALTRACE experiment at Barbados in June and July 2013. Based on high accurate measurements of the linear depolarization ratio down to about 150–200 m above ground level, the dust volume fraction and the dust mass concentration within the Caribbean boundary layer can be derived. Additional information from radiosonde launches at the ground-based measurement site provide independent information of the boundary layer height and the meteorological situation within the boundary layer. We investigate the lidar derived optical properties, the lidar ratio and the particle linear depolarization ratio at 355 and 532 nm and find over all mean values and mean uncertainties of 0.04 ± 0.03 and 0.05 ± 0.04 at 355 and 532 nm, respectively, for the particle linear depolarization ratio, and 26 ± 5 sr for the lidar ratio at 355 and 532 nm. For the concentration of dust in the Caribbean boundary layer we find that most values are between 20 and 50 g/m3, and that on most days the dust contribution to total aerosol volume is about 30–40 %. Comparing the dust contribution to the columnintegrated sun-photometer measurements we see a correlation of high dust contribution, high total aerosol optical depth and a corresponding low Angström exponent, and of low dust contribution with low total aerosol optical depth and corresponding high Angström exponent. The relative humidity within the boundary layer was high with values around 80 % on most of the days.


2020 ◽  
Vol 13 (2) ◽  
pp. 893-905 ◽  
Author(s):  
Elina Giannakaki ◽  
Panos Kokkalis ◽  
Eleni Marinou ◽  
Nikolaos S. Bartsotas ◽  
Vassilis Amiridis ◽  
...  

Abstract. A new method, called ElEx (elastic extinction), is proposed for the estimation of extinction coefficient lidar profiles using only the information provided by the elastic and polarization channels of a lidar system. The method is applicable to lidar measurements both during daytime and nighttime under well-defined aerosol mixtures. ElEx uses the particle backscatter profiles at 532 nm and the vertically resolved particle linear depolarization ratio measurements at the same wavelength. The particle linear depolarization ratio and the lidar ratio values of pure aerosol types are also taken from literature. The total extinction profile is then estimated and compared well with Raman retrievals. In this study, ElEx was applied in an aerosol mixture of marine and dust particles at Finokalia station during the CHARADMExp campaign. Any difference between ElEx and Raman extinction profiles indicates that the nondust component could be probably attributed to polluted marine or polluted continental aerosols. Comparison with sun photometer aerosol optical depth observations is performed as well during daytime. Differences in the total aerosol optical depth are varying between 1.2 % and 72 %, and these differences are attributed to the limited ability of the lidar to correctly represent the aerosol optical properties in the near range due to the overlap problem.


2019 ◽  
Author(s):  
Elina Giannakaki ◽  
Panos Kokkalis ◽  
Eleni Marinou ◽  
Nikolaos S. Bartsotas ◽  
Vassilis Amiridis ◽  
...  

Abstract. In this study we estimate the particle extinction profiles at Finokalia, Crete, using only the information provided by the elastic and polarization channels of a PollyXT lidar system. Most of the time Finokalia site is affected by only two aerosol types, i.e. marine and dust particles. These two aerosol types, having different optical properties, permit the separation of aerosol mixture. The proposed method uses the particle backscatter profiles at 532 nm and the vertically resolved particle linear depolarization ratio measurements at the same wavelength. The particle linear depolarization ratio and the lidar ratio values of pure aerosol types are taken from literature. The total extinction profile is then estimated and compared well with Raman retrievals. Any difference between the proposed methodology and Raman extinction profiles indicates that the non-dust component could be probably attributed to polluted marine or polluted continental aerosols. Comparison with sun-photometric aerosol optical depth observations is performed as well during daytime with reasonable differences between the two instruments. Differences in the total aerosol optical depth is attributed to the limited ability of the lidar to correctly represent the aerosol optical properties in the near range due to overlap problem.


2021 ◽  
Author(s):  
Hengheng Zhang ◽  
Frank Wagner ◽  
Harald Saathoff ◽  
Heike Vogel ◽  
Gholam Ali Hoshyaripour ◽  
...  

Abstract. The evolution and the properties of a Saharan dust plume were studied near the city of Karlsruhe in south-west Germany (8.4298° E, 49.0953° N) from April 7 to 9, 2018 combining a scanning LIDAR (90°, 30°), a vertical LIDAR (90°), a sun photometer, and the transport model ICON-ART. The LIDAR measurements show that the dust particles had backscatter coefficients of 0.86 ± 0.14 Mm−1 Sr−1, an extinction coefficient of 40 ± 0.8 Mm−1, a LIDAR ratio of 46 ± 5 sr, and a particle depolarization ratio of 0.33 ± 0.07. These values are in good agreement with those obtained in previous studies of Saharan dust plumes in Western Europe. Compared to the remote sensing measurements, the model simulation predicts the plume arrival time, its layer height, and structure very well but overestimates the backscatter coefficient. In this manuscript, we discuss the complementarity and advantages of the different measurement methods as well model simulations to predict Saharan dust plumes. Main conclusions are that the ICON-ART model can predict the structure of Saharan dust plumes very well but overestimates the backscatter coefficients by a factor of 2.2 ± 0.16 at 355 nm and underestimates the aerosol optical depth (AOD) by a factor of 1.5 ± 0.11 at 340 nm for this Saharan dust plume event. Employing a scanning aerosol LIDAR allows determining backscatter coefficient, particle depolarization ratio and especially LIDAR ratio of Saharan dust both for daytime and nighttime independently. Combining LIDAR with sun photometer data allows constraining aerosol optical depth in different ways and determining column integrated LIDAR ratios. These comprehensive datasets allow for a better understanding of Saharan dust plumes in Western Europe.


2021 ◽  
Author(s):  
Moritz Haarig ◽  
Albert Ansmann ◽  
Ronny Engelmann ◽  
Holger Baars ◽  
Dietrich Althausen ◽  
...  

Abstract. Two Saharan dust layers observed over Leipzig in February and March 2021 were used to provide the first ever lidar measurements of the extinction coefficient at 1064 nm for desert dust. The advanced multiwavelength Raman polarization lidar was able to provide, for the first time, the lidar ratio (extinction-to-backscatter ratio) and particle linear depolarization ratio at all three classical lidar wavelengths (355, 532 and 1064 nm). The pure dust conditions during the first event exhibit lidar ratios of 47±8, 50±5 and 63±13 sr and particle linear depolarization ratios of 0.260±0.026, 0.298±0.017 and 0.214±0.025 at the wavelengths of 355, 532 and 1064 nm, respectively. The second, slightly polluted dust case shows a similar spectral behavior with values of the lidar ratio of 52±8, 47±5 and 61±10 sr and the depolarization ratio of 0.188±0.053, 0.270±0.017 and 0.242±0.007 at 355, 532 and 1064 nm, respectively. The results were compared to AERONET v3 inversions and GRASP retrievals at six and seven wavelengths, which could reproduce the spectral slope of the lidar ratio from 532 to 1064 nm. The spectral slope of the particle linear depolarization ratio could not be reproduced by the AERONET inversions, especially at 1064 nm.


2015 ◽  
Vol 15 (19) ◽  
pp. 11067-11080 ◽  
Author(s):  
S. Groß ◽  
V. Freudenthaler ◽  
K. Schepanski ◽  
C. Toledano ◽  
A. Schäfler ◽  
...  

Abstract. Dual-wavelength Raman and depolarization lidar observations were performed during the Saharan Aerosol Long-range Transport and Aerosol-Cloud interaction Experiment in Barbados in June and July 2013 to characterize the optical properties and vertical distribution of long-range transported Saharan dust after transport across the Atlantic Ocean. Four major dust events were studied during the measurements from 15 June to 13 July 2013 with aerosol optical depths at 532 nm of up to 0.6. The vertical aerosol distribution was characterized by a three-layer structure consisting of the boundary layer, the entrainment or mixing layer and the pure Saharan dust layer. The upper boundary of the pure dust layer reached up to 4.5 km in height. The contribution of the pure dust layer was about half of the total aerosol optical depth at 532 nm. The total dust contribution was about 50–70 % of the total aerosol optical depth at 532 nm. The lidar ratio within the pure dust layer was found to be wavelength independent with mean values of 53 ± 5 sr at 355 nm and 56 ± 7 sr at 532 nm. For the particle linear depolarization ratio, wavelength-independent mean values of 0.26 ± 0.03 at 355 nm and 0.27 ± 0.01 at 532 nm have been found.


2020 ◽  
Author(s):  
Rei Kudo ◽  
Henri Diémoz ◽  
Victor Estellés ◽  
Monica Campanelli ◽  
Masahiro Momoi ◽  
...  

Abstract. The Prede POM sky radiometer is a filter radiometer deployed worldwide in the SKYNET international network. A new method called, Skyrad pack MRI version 2 (MRI v2), is here presented, to retrieve aerosol properties (size distribution, real and imaginary parts of the refractive index, single-scattering albedo, asymmetry factor, lidar ratio, and linear depolarization ratio), and water vapor and ozone column concentrations from the sky radiometer measurements. MRI v2 overcomes two limitations of previous methods (Skyrad pack versions 4.2 and 5, and MRI version 1). One is the use of all the wavelengths of 315, 340, 380, 400, 500, 675, 870, 940, 1020, 1627, and 2200 nm, if available from the sky radiometers, for example, in POM-02 models. The previous methods cannot use the wavelengths of 315, 940, 1627, and 2200 nm. This enables us to provide improved estimates of the aerosol optical properties, covering almost all the wavelengths of solar radiation. The other is the use of measurements in the principal plane geometry in addition to the solar almucantar plane geometry that is used in the previous versions. The measurements in the principal plane are regularly performed, however they are currently not exploited despite being useful in the case of small solar zenith angles, when the scattering angle distribution for almucantars becomes too small to yield useful information. Moreover, in the inversion algorithm, MRI v2 optimizes the smoothness constraints of the spectral dependencies of the refractive index and size distribution, and changes the contribution of the diffuse radiances to the cost function according to the aerosol optical depth. These overcome issues with the estimation of the size distribution and single-scattering albedo in the Skyrad pack version 4.2. The scattering model used here allows for non-spherical particles, improving results for mineral dust and permitting to evaluate the depolarization ratio. An assessment of the retrieval uncertainties using synthetic measurement show that best performance is obtained when the aerosol optical depths is larger than 0.2 at 500 nm. Improvements over the Skyrad pack versions 4.2 and 5 are obtained for the retrieved size distribution, imaginary part of the refractive index, single-scattering albedo, and lidar ratio at Tsukuba, Japan, while yielding comparable retrievals of the aerosol optical depth, real part of the refractive index, and asymmetry factor. A radiative closure study using surface solar irradiances from Baseline Surface Radiation Network and the parameters retrieved from MRI v2 showed consistency, with a positive bias of the simulated global irradiance, about +24 Wm−2 (+3 %). Furthermore, the MRI v2 retrievals of the refractive index, single-scattering albedo, asymmetry factor, and size distribution have been found in agreement with integrated profiles of aircraft in-situ measurements of two Saharan dust events at the Cape Verde archipelago, during the SAVEX-D 2015 field campaign.


2020 ◽  
Vol 237 ◽  
pp. 02025
Author(s):  
Hamid R. Khalesifard ◽  
Hossein Panahifar ◽  
Fatemeh Ghomashi ◽  
Salar Alizadeh ◽  
Ruhollah Moradhaseli

The Urmia Lake, a hypersaline lake in Northwest Iran is facing a severe drying scenario. We have installed an azimuthal scanning depolarized backscatter lidar in the coast of the lake to monitor the atmospheric aerosols that may originate from the dried lake bed. We also used the CALIPSO recordings to monitor the aerosol optical depth and particulate depolarization ratio just over the lake. Recordings of the lidar and CALIPSO both show that dry salt particles can be found in the atmospheric boundary layer over the lake especially in summer times. Also CALIPSO data in synergy with HYSPLIT model show that the lake is not an intense aerosol source comparing to neighboring sources like the Mesopotamia region but it is under their influence.


2021 ◽  
Vol 14 (5) ◽  
pp. 3395-3426
Author(s):  
Rei Kudo ◽  
Henri Diémoz ◽  
Victor Estellés ◽  
Monica Campanelli ◽  
Masahiro Momoi ◽  
...  

Abstract. The Prede POM sky radiometer is a filter radiometer deployed worldwide in the SKYNET international network. A new method, called Skyrad pack MRI version 2 (MRI v2), is presented here to retrieve aerosol properties (size distribution, real and imaginary parts of the refractive index, single-scattering albedo, asymmetry factor, lidar ratio, and linear depolarization ratio), water vapor, and ozone column concentrations from the sky radiometer measurements. MRI v2 overcomes two limitations of previous methods (Skyrad pack versions 4.2 and 5, MRI version 1). One is the use of all the wavelengths of 315, 340, 380, 400, 500, 675, 870, 940, 1020, 1627, and 2200 nm if available from the sky radiometers, for example, in POM-02 models. The previous methods cannot use the wavelengths of 315, 940, 1627, and 2200 nm. This enables us to provide improved estimates of the aerosol optical properties, covering almost all the wavelengths of solar radiation. The other is the use of measurements in the principal plane geometry in addition to the solar almucantar plane geometry that is used in the previous versions. Measurements in the principal plane are regularly performed; however, they are currently not exploited despite being useful in the case of small solar zenith angles when the scattering angle distribution for almucantars becomes too small to yield useful information. Moreover, in the inversion algorithm, MRI v2 optimizes the smoothness constraints of the spectral dependencies of the refractive index and size distribution, and it changes the contribution of the diffuse radiances to the cost function according to the aerosol optical depth. This overcomes issues with the estimation of the size distribution and single-scattering albedo in the Skyrad pack version 4.2. The scattering model used here allows for non-spherical particles, improving results for mineral dust and permitting evaluation of the depolarization ratio. An assessment of the retrieval uncertainties using synthetic measurements shows that the best performance is obtained when the aerosol optical depth is larger than 0.2 at 500 nm. Improvements over the Skyrad pack versions 4.2 and 5 are obtained for the retrieved size distribution, imaginary part of the refractive index, single-scattering albedo, and lidar ratio at Tsukuba, Japan, while yielding comparable retrievals of the aerosol optical depth, real part of the refractive index, and asymmetry factor. A radiative closure study using surface solar irradiances from the Baseline Surface Radiation Network and the parameters retrieved from MRI v2 showed consistency, with a positive bias of the simulated global irradiance of about +1 %. Furthermore, the MRI v2 retrievals of the refractive index, single-scattering albedo, asymmetry factor, and size distribution have been found to be in agreement with integrated profiles of aircraft in situ measurements of two Saharan dust events at the Cape Verde archipelago during the Sunphotometer Airborne Validation Experiment in Dust (SAVEX-D) 2015 field campaign.


Sign in / Sign up

Export Citation Format

Share Document