scholarly journals Insight into winter haze formation mechanisms based on aerosol hygroscopicity and effective density measurements

2017 ◽  
Vol 17 (11) ◽  
pp. 7277-7290 ◽  
Author(s):  
Yuanyuan Xie ◽  
Xingnan Ye ◽  
Zhen Ma ◽  
Ye Tao ◽  
Ruyu Wang ◽  
...  

Abstract. We characterize a representative particulate matter (PM) episode that occurred in Shanghai during winter 2014. Particle size distribution, hygroscopicity, effective density, and single particle mass spectrometry were determined online, along with offline analysis of water-soluble inorganic ions. The mass ratio of SNA ∕ PM1. 0 (sulfate, nitrate, and ammonium) fluctuated slightly around 0.28, suggesting that both secondary inorganic compounds and carbonaceous aerosols contributed substantially to the haze formation, regardless of pollution level. Nitrate was the most abundant ionic species during hazy periods, indicating that NOx contributed more to haze formation in Shanghai than did SO2. During the representative PM episode, the calculated PM was always consistent with the measured PM1. 0, indicating that the enhanced pollution level was attributable to the elevated number of larger particles. The number fraction of the near-hydrophobic group increased as the PM episode developed, indicating the accumulation of local emissions. Three banana-shaped particle evolutions were consistent with the rapid increase of PM1. 0 mass loading, indicating that the rapid size growth by the condensation of condensable materials was responsible for the severe haze formation. Both hygroscopicity and effective density of the particles increased considerably with growing particle size during the banana-shaped evolutions, indicating that the secondary transformation of NOx and SO2 was one of the most important contributors to the particle growth. Our results suggest that the accumulation of gas-phase and particulate pollutants under stagnant meteorological conditions and subsequent rapid particle growth by secondary processes were primarily responsible for the haze pollution in Shanghai during wintertime.

2017 ◽  
Author(s):  
Yuanyuan Xie ◽  
Xingnan Ye ◽  
Zhen Ma ◽  
Ye Tao ◽  
Ruyu Wang ◽  
...  

Abstract. We characterize a representative haze event from a series of periodic particulate matter (PM) episodes that occurred in Shanghai during winter 2014. Particle size distribution, hygroscopicity, and effective density were measured online, along with analysis of water-soluble inorganic ions and single particle mass spectrometry. Regardless of pollution level, the mass ratio of SNA/PM1.0 (sulfate, nitrate, and ammonium) slightly fluctuated around 0.28 over the whole observation, suggesting that both secondary inorganic compounds and carbonaceous aerosols (including soot and organic matter) contributed substantially to the haze formation. Nitrate was the most abundant ionic species during hazy periods, indicating that NOx contributed more to haze formation in Shanghai than did SO2. The calculated PM concentration from particle size distribution displayed a variation pattern similar to that of measured PM1.0 during the representative PM episode, indicating that enhanced pollution level was attributable to the elevated number of larger particles. The number fraction of the near-hydrophobic group increased as the PM episode developed, indicating accumulation of local emissions. Three "banana-shape" particle evolutions were consistent with the rapid increase in PM1.0 mass loading, indicating rapid size growth by condensation of condensable materials was responsible for the severe haze formation. Both hygroscopicity and effective density of the particles increased considerably with growing particle size during the banana-shaped evolutions, indicating that secondary transformation of NOx and SO2 was a major contributor to the particle growth. Our results suggest that the accumulation of gas-phase and particulate pollutants under stagnant meteorological conditions and subsequent rapid particle growth by secondary processes, were primarily responsible for the haze pollution in Shanghai during wintertime.


2020 ◽  
Author(s):  
Jian Xu ◽  
Jia Chen ◽  
Na Zhao ◽  
Guochen Wang ◽  
Guangyuan Yu ◽  
...  

Abstract. Ammonia in the atmosphere is essential for the formation of fine particles that impact air quality and climate. Despite extensive prior research to disentangle the relationship between ammonia and haze pollution, the role of ammonia in haze formation in the high ammonia emitted regions is still not well understood. Aiming to better understand secondary inorganic aerosol (SNA) formation mechanisms under high ammonia conditions, one-year hourly measurement of water-soluble inorganic species (gas and particle) was conducted in a rural supersite in Shanghai. Exceedingly high levels of agricultural ammonia, constantly around 30 μg m−3, were observed. We find that ammonia gas-particle conversion ratio (ACR), as opposed to ammonia concentrations, plays a critical role in SNA formation during the haze period. By assessing the effects of various parameters, including temperature (T), aerosol water content (AWC), aerosol pH, and activity coefficient, it seems that AWC plays predominant regulating roles for ACR. We propose a self-amplifying feedback mechanism associated with ACR for the formation of SNA, which is consistent with diurnal variations of ACR, AWC, and SNA. Our results imply that reduction of ammonia emissions alone may not reduce SNA effectively at least in rural agricultural sites in China.


2020 ◽  
Vol 20 (12) ◽  
pp. 7259-7269 ◽  
Author(s):  
Jian Xu ◽  
Jia Chen ◽  
Na Zhao ◽  
Guochen Wang ◽  
Guangyuan Yu ◽  
...  

Abstract. Ammonia in the atmosphere is essential for the formation of fine particles that impact air quality and climate. Despite extensive prior research to disentangle the relationship between ammonia and haze pollution, the role of ammonia in haze formation in high ammonia-emitting regions is still not well understood. Aiming to better understand secondary inorganic aerosol (sulfate, nitrate, ammonium – SNA) formation mechanisms under high-ammonia conditions, 1-year hourly measurement of water-soluble inorganic species (gas and particle) was conducted at a rural supersite in Shanghai. Exceedingly high levels of agricultural ammonia, constantly around 30 µg m−3, were observed. We find that gas-particle partitioning of ammonia (ε(NH4+)), as opposed to ammonia concentrations, plays a critical role in SNA formation during the haze period. From an assessment of the effects of various parameters, including temperature (T), aerosol water content (AWC), aerosol pH, and activity coefficient, it seems that AWC plays predominant regulating roles for ε(NH4+). We propose a self-amplifying feedback mechanism associated with ε(NH4+) for the formation of SNA, which is consistent with diurnal variations in ε(NH4+), AWC, and SNA. Our results imply that a reduction in ammonia emissions alone may not reduce SNA effectively, at least at rural agricultural sites in China.


2016 ◽  
Vol 16 (11) ◽  
pp. 7357-7371 ◽  
Author(s):  
Mi Tian ◽  
Huanbo Wang ◽  
Yang Chen ◽  
Fumo Yang ◽  
Xiaohua Zhang ◽  
...  

Abstract. Extremely severe haze weather events occurred in many cities in China, especially in the east part of the country, in January 2013. Comprehensive measurements including hourly concentrations of PM2.5 and its major chemical components (water-soluble inorganic ions, organic carbon (OC), and elemental carbon (EC)) and related gas-phase precursors were conducted via an online monitoring system in Suzhou, a medium-sized city in Jiangsu province, just east of Shanghai. PM2.5 (particulate matter with an aerodynamic diameter of 2.5 µm or less) frequently exceeded 150 µg m−3 on hazy days, with the maximum reaching 324 µg m−3 on 14 January 2013. Unfavorable weather conditions (high relative humidity (RH), and low rainfall, wind speed, and atmospheric pressure) were conducive to haze formation. High concentrations of secondary aerosol species (including SO42−, NO3−, NH4+, and SOC) and gaseous precursors were observed during the first two haze events, while elevated primary carbonaceous species emissions were found during the third haze period, pointing to different haze formation mechanisms. Organic matter (OM), (NH4)2SO4, and NH4NO3 were found to be the major contributors to visibility impairment. High concentrations of sulfate and nitrate might be explained by homogeneous gas-phase reactions under low RH conditions and by heterogeneous processes under relatively high RH conditions. Analysis of air mass trajectory clustering and potential source contribution function showed that aerosol pollution in the studied areas was mainly caused by local activities and surrounding sources transported from nearby cities.


2014 ◽  
Vol 14 (11) ◽  
pp. 16731-16776 ◽  
Author(s):  
B. Zheng ◽  
Q. Zhang ◽  
Y. Zhang ◽  
K. B. He ◽  
K. Wang ◽  
...  

Abstract. Severe regional haze pollution events occurred in eastern and central China in January 2013, which had adverse effects on the environment and public health. Extremely high levels of particulate matter with aerodynamic diameter of 2.5 μm or less (PM2.5) with dominant components of sulfate and nitrate are responsible for the haze pollution. Although heterogeneous chemistry is thought to play an important role in the production of sulfate and nitrate during haze episodes, few studies have comprehensively evaluated the effect of heterogeneous chemistry on haze formation in China by using the 3-D models due to of a lack of treatments for heterogeneous reactions in most climate and chemical transport models. In this work, the offline-coupled WRF-CMAQ model with newly added heterogeneous reactions is applied to East Asia to evaluate the impacts of heterogeneous chemistry and the meteorological anomaly during January 2013 on regional haze formation. The revised CMAQ with heterogeneous chemistry not only captures the magnitude and temporal variation of sulfate and nitrate, but also reproduces the enhancement of relative contribution of sulfate and nitrate to PM2.5 mass from clean days to polluted haze days. These results indicate the significant role of heterogeneous chemistry in regional haze formation and improve the understanding of the haze formation mechanisms during the January 2013 episode.


2015 ◽  
Vol 15 (4) ◽  
pp. 2031-2049 ◽  
Author(s):  
B. Zheng ◽  
Q. Zhang ◽  
Y. Zhang ◽  
K. B. He ◽  
K. Wang ◽  
...  

Abstract. Severe regional haze pollution events occurred in eastern and central China in January 2013, which had adverse effects on the environment and public health. Extremely high levels of particulate matter with aerodynamic diameter of 2.5 μm or less (PM2.5) with dominant components of sulfate and nitrate are responsible for the haze pollution. Although heterogeneous chemistry is thought to play an important role in the production of sulfate and nitrate during haze episodes, few studies have comprehensively evaluated the effect of heterogeneous chemistry on haze formation in China by using the 3-D models due to of a lack of treatments for heterogeneous reactions in most climate and chemical transport models. In this work, the WRF-CMAQ model with newly added heterogeneous reactions is applied to East Asia to evaluate the impacts of heterogeneous chemistry and the meteorological anomaly during January 2013 on regional haze formation. As the parameterization of heterogeneous reactions on different types of particles is not well established yet, we arbitrarily selected the uptake coefficients from reactions on dust particles and then conducted several sensitivity runs to find the value that can best match observations. The revised CMAQ with heterogeneous chemistry not only captures the magnitude and temporal variation of sulfate and nitrate, but also reproduces the enhancement of relative contribution of sulfate and nitrate to PM2.5 mass from clean days to polluted haze days. These results indicate the significant role of heterogeneous chemistry in regional haze formation and improve the understanding of the haze formation mechanisms during the January 2013 episode.


2019 ◽  
Author(s):  
Shengzhen Zhou ◽  
Luolin Wu ◽  
Junchen Guo ◽  
Weihua Chen ◽  
Xuemei Wang ◽  
...  

Abstract. Great progress has been made recently in the understanding of the sources and formation mechanisms of atmospheric aerosols at the ground level. However, vertical profiles and sources of size-resolved particulate matter within the urban boundary layer are still lacking. In this study, vertical distribution characteristics of size-segregated particles were investigated at three observation platforms (ground, 118 m and 488 m) on the 610-meter-high Canton Tower in Guangzhou, China. Size-segregated aerosol samples were simultaneously collected at the three levels on the Canton Tower in autumn and winter, respectively. Major aerosol components, including water-soluble ions, organic carbon and elemental carbon, were measured. The results showed that daily average fine-particle concentrations generally decreased with height. Concentrations of sulfate and ammonium in fine particles displayed small vertical gradients and nitrate concentrations increased with height in autumn, while the above chemical components showed greater variations in winter than in autumn. The size distributions of sulfate and ammonium in both seasons were characterized by dominant unimodal droplet modes with a peak at the size range of 0.44–1.0 μm. In autumn, the nitrate size distribution was bi-modal, peaking at 0.44–1.0 μm and 2.5–10 μm, while it was unimodal in winter, implying that the formation mechanisms for nitrate particles were different in the two seasons. Our results suggest droplet mode sulfate and nitrate are likely formed from aqueous-phase reactions and coarse mode nitrate formation is attributed to heterogeneous reactions of gaseous nitric acid on existing sea-derived coarse particles in autumn at the measurement site. The results from pollution cases study further showed that atmospheric aqueous-phase and heterogeneous reactions together with adverse weather conditions, such as temperature inversion and calm wind, resulted in the autumn and winter haze pollution in the PRD region.


2018 ◽  
Vol 18 (7) ◽  
pp. 4673-4693 ◽  
Author(s):  
Felix A. Mackenzie-Rae ◽  
Helen J. Wallis ◽  
Andrew R. Rickard ◽  
Kelly L. Pereira ◽  
Sandra M. Saunders ◽  
...  

Abstract. The molecular composition of the water-soluble fraction of secondary organic aerosol (SOA) generated from the ozonolysis of α-phellandrene is investigated for the first time using high-pressure liquid chromatography coupled to high-resolution quadrupole–Orbitrap tandem mass spectrometry. In total, 21 prominent products or isomeric product groups were identified using both positive and negative ionisation modes, with potential formation mechanisms discussed. The aerosol was found to be composed primarily of polyfunctional first- and second-generation species containing one or more carbonyl, acid, alcohol and hydroperoxide functionalities, with the products significantly more complex than those proposed from basic gas-phase chemistry in the companion paper (Mackenzie-Rae et al., 2017). Mass spectra show a large number of dimeric products are also formed. Both direct scavenging evidence using formic acid and indirect evidence from double bond equivalency factors suggest the dominant oligomerisation mechanism is the bimolecular reaction of stabilised Criegee intermediates (SCIs) with non-radical ozonolysis products. Saturation vapour concentration estimates suggest monomeric species cannot explain the rapid nucleation burst of fresh aerosol observed in chamber experiments; hence, dimeric species are believed to be responsible for new particle formation, with detected first- and second-generation products driving further particle growth in the system. Ultimately, identification of the major constituents and formation pathways of α-phellandrene SOA leads to a greater understanding of the atmospheric processes and implications of monoterpene emissions and SCIs, especially around eucalypt forests where α-phellandrene is primarily emitted.


Sign in / Sign up

Export Citation Format

Share Document