scholarly journals Differentiating between particle formation and growth events in an urban environment

2018 ◽  
Vol 18 (15) ◽  
pp. 11171-11183 ◽  
Author(s):  
Buddhi Pushpawela ◽  
Rohan Jayaratne ◽  
Lidia Morawska

Abstract. Small aerosols at a given location in the atmosphere often originate in situ from new particle formation (NPF). However, they can also be produced and then transported from a distant location to the point of observation where they may continue to grow to larger sizes. This study was carried out in the subtropical urban environment of Brisbane, Australia, in order to assess the relative occurrence frequencies of NPF events and particle growth events with no NPF. We used a neutral cluster and air ion spectrometer (NAIS) to monitor particles and ions in the size range 2–42 nm on 485 days, and identified 236 NPF events on 213 days. The majority of these events (37 %) occurred during the daylight hours with just 10 % at night. However, the NAIS also showed particle growth with no NPF on many nights (28 %). Using a scanning mobility particle sizer (SMPS), we showed that particle growth continued at larger sizes and occurred on 70 % of nights, typically under high relative humidities. Most particles in the air, especially near coastal locations, contain hygroscopic salts such as sodium chloride that may exhibit deliquescence when the relative humidity exceeds about 75 %. The growth rates of particles at night often exceeded the rates observed during NPF events. Although most of these night time growth events were preceded by day time NPF events, the latter was not a prerequisite for growth. We conclude that particle growth in the atmosphere can be easily misidentified as NPF, especially when they are monitored by an instrument that cannot detect them at the very small sizes.

2018 ◽  
Author(s):  
Buddhi Pushpawela ◽  
Rohan Jayaratne ◽  
Lidia Morawska

Abstract. Small aerosols at a given location in the atmosphere often originate in-situ from new particle formation (NPF). However, they can also be produced and then transported from a distant location to the point of observation where they may continue to grow to larger sizes. This study was carried out in the subtropical urban environment of Brisbane, Australia, in order to assess the relative occurrence frequencies of NPF events and particle growth events with no NPF. We used a neutral cluster and air ion spectrometer (NAIS) to monitor particles and ions in the size range 2–42 nm on 485 days, and identified 236 NPF events on 213 days. The majority of these events (37 %) occurred during the daylight hours with just 10 % at night. However, the NAIS also showed particle growth with no NPF on many nights (28 %). Using a scanning mobility particle sizer (SMPS), we showed that particle growth continued at larger sizes and occurred on 70 % of nights, typically under high relative humidities. Most particles in the air, especially near coastal locations, contain hygroscopic salts such as sodium chloride that may exhibit deliquescence when the relative humidity exceeds about 75 %. The growth rates of particles at night often exceeded the rates observed during NPF events. Although most of these night time growth events were preceded by daytime NPF events, the latter was not a prerequisite for growth. We conclude that particle growth in the atmosphere can be easily misidentified as NPF, especially when they are monitored by an instrument that cannot detect them at the very small sizes.


2019 ◽  
Vol 19 (18) ◽  
pp. 11985-12006 ◽  
Author(s):  
Peter J. Marinescu ◽  
Ezra J. T. Levin ◽  
Don Collins ◽  
Sonia M. Kreidenweis ◽  
Susan C. van den Heever

Abstract. A quality-controlled, 5-year dataset of aerosol number size distributions (particles with diameters (Dp) from 7 nm through 14 µm) was developed using observations from a scanning mobility particle sizer, aerodynamic particle sizer, and a condensation particle counter at the Department of Energy's Southern Great Plains (SGP) site. This dataset was used for two purposes. First, typical characteristics of the aerosol size distribution (number, surface area, and volume) were calculated for the SGP site, both for the entire dataset and on a seasonal basis, and size distribution lognormal fit parameters are provided. While the median size distributions generally had similar shapes (four lognormal modes) in all the seasons, there were some significant differences between seasons. These differences were most significant in the smallest particles (Dp<30 nm) and largest particles (Dp>800 nm). Second, power spectral analysis was conducted on this long-term dataset to determine key temporal cycles of total aerosol concentrations, as well as aerosol concentrations in specified size ranges. The strongest cyclic signal was associated with a diurnal cycle in total aerosol number concentrations that was driven by the number concentrations of the smallest particles (Dp<30 nm). This diurnal cycle in the smallest particles occurred in all seasons in ∼50 % of the observations, suggesting a persistent influence of new particle formation events on the number concentrations observed at the SGP site. This finding is in contrast with earlier studies that suggest new particle formation is observed primarily in the springtime at this site. The timing of peak concentrations associated with this diurnal cycle was shifted by several hours depending on the season, which was consistent with seasonal differences in insolation and boundary layer processes. Significant diurnal cycles in number concentrations were also found for particles with Dp between 140 and 800 nm, with peak concentrations occurring in the overnight hours, which were primarily associated with both nitrate and organic aerosol cycles. Weaker cyclic signals were observed for longer timescales (days to weeks) and are hypothesized to be related to the timescales of synoptic weather variability. The strongest periodic signals (3.5–5 and 7 d cycles) for these longer timescales varied depending on the season, with no cyclic signals and the lowest variability in the summer.


2018 ◽  
Vol 18 (13) ◽  
pp. 9243-9261 ◽  
Author(s):  
Brice Foucart ◽  
Karine Sellegri ◽  
Pierre Tulet ◽  
Clémence Rose ◽  
Jean-Marc Metzger ◽  
...  

Abstract. This study aims to report and characterise the frequent new particle formation (NPF) events observed at the Maïdo observatory, Réunion, a Southern Hemisphere site located at 2150 m (a.s.l.) and surrounded by the Indian Ocean. From May 2014 to December 2015, continuous aerosol measurements were made using both a differential mobility particle sizer (DMPS) and an air ion spectrometer (AIS) to characterise the NPF events down to the lowest particle-size scale. Carbon monoxide (CO) and black carbon (BC) concentrations were monitored, as well as meteorological parameters, in order to identify the conditions that were favourable to the occurrence of nucleation in this specific environment. We point out that the annual NPF frequency average (65 %) is one of the highest reported so far. Monthly averages show a bimodal variation in the NPF frequency, with a maximum observed during transition periods (autumn and spring). A high yearly median particle growth rate (GR) of 15.16 nm h−1 is also measured showing a bimodal seasonal variation with maxima observed in July and November. Yearly medians of 2 and 12 nm particle formation rates (J2 and J12) are 0.858 and 0.508 cm−3 s−1, respectively, with a seasonal variation showing a maximum during winter, that correspond to low temperature and RH typical of the dry season, but also to high BC concentrations. We show that the condensation sink exceeds a threshold value (1.04×10−3 s−1) with a similar seasonal variation than the one of the NPF event frequency, suggesting that the occurrence of the NPF process might be determined by the availability of condensable vapours, which are likely to be transported together with pre-existing particles from lower altitudes.


2011 ◽  
Vol 11 (8) ◽  
pp. 3823-3833 ◽  
Author(s):  
H. C. Cheung ◽  
L. Morawska ◽  
Z. D. Ristovski

Abstract. The aim of this study was to characterise the new particle formation events in a subtropical urban environment in the Southern Hemisphere. The study measured the number concentration of particles and its size distribution in Brisbane, Australia during 2009. The variation of particle number concentration and nucleation burst events were characterised as well as the particle growth rate which was first reported in urban environment of Australia. The annual average NUFP, NAitken and NNuc were 9.3×103, 3.7×103 and 5.6×103 cm−3, respectively. Weak seasonal variation in number concentration was observed. Local traffic exhaust emissions were a major contributor of the pollution (NUFP) observed in morning which was dominated by the Aitken mode particles, while particles formed by secondary formation processes contributed to the particle number concentration during afternoon. Overall, 65 nucleation burst events were identified during the study period. Nucleation burst events were classified into two groups, with and without particles growth after the burst of nucleation mode particles observed. The average particle growth rate of the nucleation events was 4.6 nm h−1 (ranged from 1.79–7.78 nm h−1). Case studies of the nucleation burst events were characterised including (i) the nucleation burst with particle growth which is associated with the particle precursor emitted from local traffic exhaust emission, (ii) the nucleation burst without particle growth which is due to the transport of industrial emissions from the coast to Brisbane city or other possible sources with unfavourable conditions which suppressed particle growth and (iii) interplay between the above two cases which demonstrated the impact of the vehicle and industrial emissions on the variation of particle number concentration and its size distribution during the same day.


2014 ◽  
Vol 14 (11) ◽  
pp. 16187-16242 ◽  
Author(s):  
J. Xu ◽  
Q. Zhang ◽  
M. Chen ◽  
X. Ge ◽  
J. Ren ◽  
...  

Abstract. An aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed along with a Scanning Mobility Particle Sizer (SMPS) and a Multi Angle Absorption Photometers (MAAP) to measure the temporal variations of the mass loading, chemical composition, and size distribution of sub-micrometer particulate matter (PM1) in Lanzhou, northwest China, during 12 July–7 August 2012. The average PM1 mass concentration including non-refractory PM1 (NR-PM1) measured by HR-ToF-AMS and black carbon (BC) measured by MAAP during this study was 24.5 μg m−3 (ranging from 0.86 to 105μg m−3), with a mean composition consisting of 47% organics, 16% sulfate, 12% BC, 11% ammonium, 10% nitrate, and 4% chloride. The organics was consisted of 70% carbon, 21% oxygen, 8% hydrogen, and 1% nitrogen, with the average oxygen-to-carbon ratio (O / C) of 0.33 and organic mass-to-carbon ratio (OM / OC) of 1.58. Positive matrix factorization (PMF) of the high-resolution mass spectra of organic aerosols (OA) identified four distinct factors which represent, respectively, two primary OA (POA) emission sources (traffic and food cooking) and two secondary OA (SOA) types – a fresher, semi-volatile oxygenated OA (SV-OOA) and a more aged, low-volatility oxygenated OA (LV-OOA). Traffic-related hydrocarbon-like OA (HOA) and BC displayed distinct diurnal patterns both with peak at ~07:00–11:00 (BJT: UTC +8) corresponding to the morning rush hours, while cooking OA (COA) peaked during three meal periods. The diurnal profiles of sulfate and LV-OOA displayed a broad peak between ∼07:00–15:00, while those of nitrate, ammonium, and SV-OOA showed a narrower peak at ~08:00–13:00. The later morning and early afternoon peak in the diurnal profiles of secondary aerosol species was likely caused by mixing down of pollutants aloft, which were likely produced in the residual layer decoupled from the boundary layer during night time. The mass spectrum of SV-OOA also showed similarity with that of coal combustion aerosol, likely contributed by coal combustion activities in Lanzhou during summer. The sources of BC were estimated by a linear decomposition algorithm that uses the time series of the NR-PM1 components. Our results indicate that a main source of BC was local traffic (47%) and that transport of regionally processes air masses also contributed significantly to BC observed in Lanzhou. Finally, the concentration and source of polycyclic aromatic hydrocarbons (PAHs) were evaluated.


Author(s):  
Linda G. Blevins ◽  
Thomas H. Cauley

Experiments to examine the effects of biomass/coal cofiring on fine particle formation were performed in the Sandia Multi-Fuel Combustor using fuels of pure coal, 3 combinations of switchgrass and coal, and pure switchgrass. A constant thermal input was maintained. The combustion products were cooled during passage through the 4.2 m long reactor to simulate the temperatures experienced in the convection pass of a boiler. Fine particle number densities, mass concentrations, and total number concentrations for particles between 10 nm and 1 μm at the reactor exit were determined using a Scanning Mobility Particle Sizer. The results indicate that the fine particle loading for cofiring is higher than that achieved with dedicated coal combustion but lower than that achieved with dedicated switchgrass combustion.


2019 ◽  
Vol 19 (8) ◽  
pp. 5679-5694 ◽  
Author(s):  
Dimitrios Bousiotis ◽  
Manuel Dall'Osto ◽  
David C. S. Beddows ◽  
Francis D. Pope ◽  
Roy M. Harrison

Abstract. New particle formation (NPF) events have different patterns of development depending on the conditions of the area in which they occur. In this study, particle size distributions in the range of 16.6–604 nm (7 years of data) were analysed and NPF events occurring at three sites of differing characteristics – rural Harwell (HAR), urban background North Kensington (NK), urban roadside Marylebone Road (MR), London, UK – were extracted and studied. The different atmospheric conditions in each study area not only have an effect on the frequency of the events, but also affect their development. The frequency of NPF events is similar at the rural and urban background locations (about 7 % of days), with a high proportion of events occurring at both sites on the same day (45 %). The frequency of NPF events at the urban roadside site is slightly less (6 % of days), and higher particle growth rates (average 5.5 nm h−1 at MR compared to 3.4 and 4.2 nm h−1 at HAR and NK respectively) must result from rapid gas-to-particle conversion of traffic-generated pollutants. A general pattern is found in which the condensation sink increases with the degree of pollution of the site, but this is counteracted by increased particle growth rates at the more polluted location. A key finding of this study is that the role of the urban environment leads to an increment of 20 % in N16–20 nm in the urban background compared to that of the rural area in NPF events occurring at both sites. The relationship of the origin of incoming air masses is also considered and an association of regional events with cleaner air masses is found. Due to lower availability of condensable species, NPF events that are associated with cleaner atmospheric conditions have lower growth rates of the newly formed particles. The decisive effect of the condensation sink in the development of NPF events and the survivability of the newly formed particles is underlined, and influences the overall contribution of NPF events to the number of ultrafine particles in an area. The other key factor identified by this study is the important role that pollution, both from traffic and other sources in the urban environment (such as heating or cooking), plays in new particle formation events.


2015 ◽  
Vol 15 (17) ◽  
pp. 10203-10218 ◽  
Author(s):  
C. Rose ◽  
K. Sellegri ◽  
E. Freney ◽  
R. Dupuy ◽  
A. Colomb ◽  
...  

Abstract. While atmospheric new particle formation (NPF) has been observed in various environments and was found to contribute significantly to the total aerosol particle concentration, the production of new particles over open seas is poorly documented in the literature. Nucleation events were detected and analysed over the Mediterranean Sea using two condensation particle counters and a scanning mobility particle sizer on board the ATR-42 research aircraft during flights conducted between 11 September and 4 November 2012 in the framework of the HYMEX (HYdrological cycle in Mediterranean EXperiment) project. The main purpose of the present work was to characterize the spatial extent of the NPF process, both horizontally and vertically. Our findings show that nucleation is occurring over large areas above the Mediterranean Sea in all air mass types. Maximum concentrations of particles in the size range 5–10 nm (N5–10) do not systematically coincide with lower fetches (time spent by the air mass over the sea before sampling), and significant N5–10 values are found for fetches between 0 and 60 h depending on the air mass type. These observations suggest that nucleation events could be more influenced by local precursors originating from emission processes occurring above the sea, rather than linked to synoptic history. Vertical soundings were performed, giving the opportunity to examine profiles of the N5–10 concentration and to analyse the vertical extent of NPF. Our observations demonstrate that the process could be favoured above 1000 m, i.e. frequently in the free troposphere, and more especially between 2000 and 3000 m, where the NPF frequency is close to 50 %. This vertical distribution of NPF might be favoured by the gradients of several atmospheric parameters, together with the mixing of two air parcels, which could also explain the occurrence of the process at preferential altitudes. In addition, increased condensation sinks collocated with high concentrations of small particles suggest the occurrence of NPF events promoted by inputs from the boundary layer, most probably associated with convective clouds and their outflow. After their formation, particles slowly grow at higher altitudes to diameters of at least 30 nm while not being greatly depleted or affected by coagulation. Our analysis of the particle size distributions suggests that particle growth could decrease with increasing altitude.


2017 ◽  
Author(s):  
Brice Foucart ◽  
Karine Sellegri ◽  
Pierre Tulet ◽  
Clémence Rose ◽  
Jean-Marc Metzger ◽  
...  

Abstract. This study aims to report and characterize the frequent new particle formation (NPF) events observed at the Maïdo observatory, Reunion Island, a Southern Hemisphere site located at 2200 m and surrounded by the Indian Ocean. In 2014 and 2015, continuous aerosol measurements were made using both a Differential Mobility Particle Sizer (DMPS) and an Air Ion Spectrometer (AIS) to characterize the NPF events down to the lowest particle size scale. Carbon monoxide (CO) and sulfur dioxide (SO2) concentrations were monitored, as well as meteorological parameters, in order to identify the conditions that were favourable to the occurrence of nucleation in this specific environment. We point out that the annual NPF frequency average (65 %) is one of the highest reported so far. Monthly averages show a bimodal variation of the NPF frequency, with a maximum observed during off-season periods (March to May and September to December). A high yearly median particle Growth Rate (GR) of 15.16 nm.h−1 is also measured, occasionally peaking at values of the order of 100 nm.h−1 and showing a bimodal seasonal variation with maxima observed in July and November. Yearly medians of 2 and 12 nm particle formation rates (J2 and J12) are 0.858 and 0.508 cm−3.s−1 respectively, with a seasonal variation similar to that of the GR. The seasonal variations of GR and J correspond to the seasonal variation of radiation, which may be responsible for more efficient photochemistry and also for a higher influence of the boundary layer, as shown by the CO seasonal variation. Multiple sources can contribute to the NPF frequency and intensity, including marine, biogenic from vegetation, and anthropogenic sources.


2013 ◽  
Vol 13 (4) ◽  
pp. 9401-9442 ◽  
Author(s):  
R. Väänänen ◽  
E.-M. Kyrö ◽  
T. Nieminen ◽  
N. Kivekäs ◽  
H. Junninen ◽  
...  

Abstract. We investigated atmospheric aerosol particle dynamics in a boreal forest zone in Northern Scandinavia. We used aerosol size distribution data measured with either a Differential Mobility Particle Sizer (DMPS) or Scanning Mobility Particle Sizer (SMPS) at three stations (Värriö, Pallas and Abisko), and combined these data with the HYSPLIT air mass trajectory analysis. We compared three approaches: analysis of new particle formation events, investigation of air masses transport from the ocean to individual stations with different over-land transport times, and analysis of changes in aerosol particle size distributions during the air masses transport from one measurement station to another. Aitken mode particles were found to have an apparent average growth rate of 0.6–0.7 nm h−1 when the air masses travelled over land. Particle growth rates during the NPF events were 3–6 times higher than the apparent particle growth. When comparing aerosol dynamics between the different stations for different over-land transport times, no major differences were found except that in Abisko the new particle formation events were observed to take place in air masses having shorter over-land times than at the other stations. We speculate that this is related to the meteorological differences along the paths of air masses caused by the land surface topology. When comparing between air masses travelling the east-to-west direction to those traveling the west-to-east directions, clear differences in the aerosol dynamics were seen. Our results suggest that the condensation growth has an important role in aerosol dynamics also when new particle formation is not evident.


Sign in / Sign up

Export Citation Format

Share Document