scholarly journals High occurrence of new particle formation events at the Maïdo high altitude observatory (2150 m), Reunion Island (Indian Ocean)

2017 ◽  
Author(s):  
Brice Foucart ◽  
Karine Sellegri ◽  
Pierre Tulet ◽  
Clémence Rose ◽  
Jean-Marc Metzger ◽  
...  

Abstract. This study aims to report and characterize the frequent new particle formation (NPF) events observed at the Maïdo observatory, Reunion Island, a Southern Hemisphere site located at 2200 m and surrounded by the Indian Ocean. In 2014 and 2015, continuous aerosol measurements were made using both a Differential Mobility Particle Sizer (DMPS) and an Air Ion Spectrometer (AIS) to characterize the NPF events down to the lowest particle size scale. Carbon monoxide (CO) and sulfur dioxide (SO2) concentrations were monitored, as well as meteorological parameters, in order to identify the conditions that were favourable to the occurrence of nucleation in this specific environment. We point out that the annual NPF frequency average (65 %) is one of the highest reported so far. Monthly averages show a bimodal variation of the NPF frequency, with a maximum observed during off-season periods (March to May and September to December). A high yearly median particle Growth Rate (GR) of 15.16 nm.h−1 is also measured, occasionally peaking at values of the order of 100 nm.h−1 and showing a bimodal seasonal variation with maxima observed in July and November. Yearly medians of 2 and 12 nm particle formation rates (J2 and J12) are 0.858 and 0.508 cm−3.s−1 respectively, with a seasonal variation similar to that of the GR. The seasonal variations of GR and J correspond to the seasonal variation of radiation, which may be responsible for more efficient photochemistry and also for a higher influence of the boundary layer, as shown by the CO seasonal variation. Multiple sources can contribute to the NPF frequency and intensity, including marine, biogenic from vegetation, and anthropogenic sources.

2018 ◽  
Vol 18 (13) ◽  
pp. 9243-9261 ◽  
Author(s):  
Brice Foucart ◽  
Karine Sellegri ◽  
Pierre Tulet ◽  
Clémence Rose ◽  
Jean-Marc Metzger ◽  
...  

Abstract. This study aims to report and characterise the frequent new particle formation (NPF) events observed at the Maïdo observatory, Réunion, a Southern Hemisphere site located at 2150 m (a.s.l.) and surrounded by the Indian Ocean. From May 2014 to December 2015, continuous aerosol measurements were made using both a differential mobility particle sizer (DMPS) and an air ion spectrometer (AIS) to characterise the NPF events down to the lowest particle-size scale. Carbon monoxide (CO) and black carbon (BC) concentrations were monitored, as well as meteorological parameters, in order to identify the conditions that were favourable to the occurrence of nucleation in this specific environment. We point out that the annual NPF frequency average (65 %) is one of the highest reported so far. Monthly averages show a bimodal variation in the NPF frequency, with a maximum observed during transition periods (autumn and spring). A high yearly median particle growth rate (GR) of 15.16 nm h−1 is also measured showing a bimodal seasonal variation with maxima observed in July and November. Yearly medians of 2 and 12 nm particle formation rates (J2 and J12) are 0.858 and 0.508 cm−3 s−1, respectively, with a seasonal variation showing a maximum during winter, that correspond to low temperature and RH typical of the dry season, but also to high BC concentrations. We show that the condensation sink exceeds a threshold value (1.04×10−3 s−1) with a similar seasonal variation than the one of the NPF event frequency, suggesting that the occurrence of the NPF process might be determined by the availability of condensable vapours, which are likely to be transported together with pre-existing particles from lower altitudes.


2013 ◽  
Vol 13 (4) ◽  
pp. 9401-9442 ◽  
Author(s):  
R. Väänänen ◽  
E.-M. Kyrö ◽  
T. Nieminen ◽  
N. Kivekäs ◽  
H. Junninen ◽  
...  

Abstract. We investigated atmospheric aerosol particle dynamics in a boreal forest zone in Northern Scandinavia. We used aerosol size distribution data measured with either a Differential Mobility Particle Sizer (DMPS) or Scanning Mobility Particle Sizer (SMPS) at three stations (Värriö, Pallas and Abisko), and combined these data with the HYSPLIT air mass trajectory analysis. We compared three approaches: analysis of new particle formation events, investigation of air masses transport from the ocean to individual stations with different over-land transport times, and analysis of changes in aerosol particle size distributions during the air masses transport from one measurement station to another. Aitken mode particles were found to have an apparent average growth rate of 0.6–0.7 nm h−1 when the air masses travelled over land. Particle growth rates during the NPF events were 3–6 times higher than the apparent particle growth. When comparing aerosol dynamics between the different stations for different over-land transport times, no major differences were found except that in Abisko the new particle formation events were observed to take place in air masses having shorter over-land times than at the other stations. We speculate that this is related to the meteorological differences along the paths of air masses caused by the land surface topology. When comparing between air masses travelling the east-to-west direction to those traveling the west-to-east directions, clear differences in the aerosol dynamics were seen. Our results suggest that the condensation growth has an important role in aerosol dynamics also when new particle formation is not evident.


2001 ◽  
Vol 57 (2) ◽  
pp. 105-121 ◽  
Author(s):  
Chatrapatty Bhugwant ◽  
Miloud Bessafi ◽  
Emmanuel Rivière ◽  
Jean Leveau

2018 ◽  
Vol 18 (16) ◽  
pp. 11779-11791 ◽  
Author(s):  
Ximeng Qi ◽  
Aijun Ding ◽  
Pontus Roldin ◽  
Zhengning Xu ◽  
Putian Zhou ◽  
...  

Abstract. Highly oxygenated multifunctional compounds (HOMs) play a key role in new particle formation (NPF), but their quantitative roles in different environments of the globe have not been well studied yet. Frequent NPF events were observed at two “flagship” stations under different environmental conditions, i.e. a remote boreal forest site (SMEAR II) in Finland and a suburban site (SORPES) in polluted eastern China. The averaged formation rate of 6 nm particles and the growth rate of 6–30 nm particles were 0.3 cm−3 s−1 and 4.5 nm h−1 at SMEAR II compared to 2.3 cm−3 s−1 and 8.7 nm h−1 at SORPES, respectively. To explore the differences of NPF at the two stations, the HOM concentrations and NPF events at two sites were simulated with the MALTE-BOX model, and their roles in NPF and particle growth in the two distinctly different environments are discussed. The model provides an acceptable agreement between the simulated and measured concentrations of sulfuric acid and HOMs at SMEAR II. The sulfuric acid and HOM organonitrate concentrations are significantly higher but other HOM monomers and dimers from monoterpene oxidation are lower at SORPES compared to SMEAR II. The model simulates the NPF events at SMEAR II with a good agreement but underestimates the growth of new particles at SORPES, indicating a dominant role of anthropogenic processes in the polluted environment. HOMs from monoterpene oxidation dominate the growth of ultrafine particles at SMEAR II while sulfuric acid and HOMs from aromatics oxidation play a more important role in particle growth. This study highlights the distinct roles of sulfuric acid and HOMs in NPF and particle growth in different environmental conditions and suggests the need for molecular-scale measurements in improving the understanding of NPF mechanisms in polluted areas like eastern China.


2019 ◽  
Author(s):  
Léa Joffrin ◽  
Steven M. Goodman ◽  
David A. Wilkinson ◽  
Beza Ramasindrazana ◽  
Erwan Lagadec ◽  
...  

AbstractBats provide key ecosystem services such as crop pest regulation, pollination, seed dispersal, and soil fertilization. Bats are also major hosts for biological agents responsible for zoonoses, such as coronaviruses (CoVs). The islands of the Western Indian Ocean are identified as a major biodiversity hotspot, with more than 50 bat species. In this study, we tested 1,013 bats belonging to 36 species from Mozambique, Madagascar, Mauritius, Mayotte, Reunion Island and Seychelles, based on molecular screening and partial sequencing of the RNA-dependent RNA polymerase gene. In total, 88 bats (8.7%) tested positive for coronaviruses, with higher prevalence in Mozambican bats (20.5% ± 4.9%) as compared to those sampled on islands (4.5% ± 1.5%). Phylogenetic analyses revealed a large diversity of α- and β-CoVs and a strong signal of co-evolution between CoVs and their bat host species, with limited evidence for host-switching, except for bat species sharing day roost sites.ImportanceThis is the first study to report the presence of coronaviruses (CoVs) in bats in Mayotte, Mozambique and Reunion Island, and in insectivorous bats in Madagascar. Eight percent of the tested bats were positive for CoVs, with higher prevalence in continental Africa than on islands. A high genetic diversity of α- and β-CoVs was found, with strong association between bat host and virus phylogenies, supporting a long history of co-evolution between bats and their associated CoVs in the Western Indian Ocean. These results highlight that strong variation between islands does exist and is associated with the composition of the bat species community on each island. Future studies should investigate whether CoVs detected in these bats have a potential for spillover in other hosts.


2017 ◽  
Vol 17 (2) ◽  
pp. 1529-1541 ◽  
Author(s):  
Clémence Rose ◽  
Karine Sellegri ◽  
Isabel Moreno ◽  
Fernando Velarde ◽  
Michel Ramonet ◽  
...  

Abstract. Global models predict that new particle formation (NPF) is, in some environments, responsible for a substantial fraction of the total atmospheric particle number concentration and subsequently contributes significantly to cloud condensation nuclei (CCN) concentrations. NPF events were frequently observed at the highest atmospheric observatory in the world, on Chacaltaya (5240 m a.s.l.), Bolivia. The present study focuses on the impact of NPF on CCN population. Neutral cluster and Air Ion Spectrometer and mobility particle size spectrometer measurements were simultaneously used to follow the growth of particles from cluster sizes down to ∼ 2 nm up to CCN threshold sizes set to 50, 80 and 100 nm. Using measurements performed between 1 January and 31 December 2012, we found that 61 % of the 94 analysed events showed a clear particle growth and significant enhancement of the CCN-relevant particle number concentration. We evaluated the contribution of NPF, relative to the transport and growth of pre-existing particles, to CCN size. The averaged production of 50 nm particles during those events was 5072, and 1481 cm−3 for 100 nm particles, with a larger contribution of NPF compared to transport, especially during the wet season. The data set was further segregated into boundary layer (BL) and free troposphere (FT) conditions at the site. The NPF frequency of occurrence was higher in the BL (48 %) compared to the FT (39 %). Particle condensational growth was more frequently observed for events initiated in the FT, but on average faster for those initiated in the BL, when the amount of condensable species was most probably larger. As a result, the potential to form new CCN was higher for events initiated in the BL (67 % against 53 % in the FT). In contrast, higher CCN number concentration increases were found when the NPF process initially occurred in the FT, under less polluted conditions. This work highlights the competition between particle growth and the removal of freshly nucleated particles by coagulation processes. The results support model predictions which suggest that NPF is an effective source of CCN in some environments, and thus may influence regional climate through cloud-related radiative processes.


2019 ◽  
Vol 19 (16) ◽  
pp. 10537-10555 ◽  
Author(s):  
Simo Hakala ◽  
Mansour A. Alghamdi ◽  
Pauli Paasonen ◽  
Ville Vakkari ◽  
Mamdouh I. Khoder ◽  
...  

Abstract. Atmospheric aerosols have significant effects on human health and the climate. A large fraction of these aerosols originates from secondary new particle formation (NPF), where atmospheric vapors form small particles that subsequently grow into larger sizes. In this study, we characterize NPF events observed at a rural background site of Hada Al Sham (21.802∘ N, 39.729∘ E), located in western Saudi Arabia, during the years 2013–2015. Our analysis shows that NPF events occur very frequently at the site, as 73 % of all the 454 classified days were NPF days. The high NPF frequency is likely explained by the typically prevailing conditions of clear skies and high solar radiation, in combination with sufficient amounts of precursor vapors for particle formation and growth. Several factors suggest that in Hada Al Sham these precursor vapors are related to the transport of anthropogenic emissions from the coastal urban and industrial areas. The median particle formation and growth rates for the NPF days were 8.7 cm−3 s−1 (J7 nm) and 7.4 nm h−1 (GR7−12 nm), respectively, both showing highest values during late summer. Interestingly, the formation and growth rates increase as a function of the condensation sink, likely reflecting the common anthropogenic sources of NPF precursor vapors and primary particles affecting the condensation sink. A total of 76 % of the NPF days showed an unusual progression, where the observed diameter of the newly formed particle mode started to decrease after the growth phase. In comparison to most long-term measurements, the NPF events in Hada Al Sham are exceptionally frequent and strong both in terms of formation and growth rates. In addition, the frequency of the decreasing mode diameter events is higher than anywhere else in the world.


Sign in / Sign up

Export Citation Format

Share Document