scholarly journals Forcing mechanisms of the terdiurnal tide

2018 ◽  
Vol 18 (21) ◽  
pp. 15725-15742 ◽  
Author(s):  
Friederike Lilienthal ◽  
Christoph Jacobi ◽  
Christoph Geißler

Abstract. Using a nonlinear mechanistic global circulation model we analyze the migrating terdiurnal tide in the middle atmosphere with respect to its possible forcing mechanisms, i.e., the absorption of solar radiation in the water vapor and ozone band, nonlinear tidal interactions, and gravity wave–tide interactions. In comparison to the forcing mechanisms of diurnal and semidiurnal tides, these terdiurnal forcings are less well understood and there are contradictory opinions about their respective relevance. In our simulations we remove the wave number 3 pattern for each forcing individually and analyze the remaining tidal wind and temperature fields. We find that the direct solar forcing is dominant and explains most of the migrating terdiurnal tide's amplitude. Nonlinear interactions due to other tides or gravity waves are most important during local winter. Further analyses show that the nonlinear forcings are locally counteracting the solar forcing due to destructive interferences. Therefore, tidal amplitudes can become even larger for simulations with removed nonlinear forcings.

2018 ◽  
Author(s):  
Friederike Lilienthal ◽  
Christoph Jacobi ◽  
Christoph Geißler

Abstract. Using a nonlinear mechanistic global circulation model we analyze the migrating terdiurnal tide in the middle atmosphere with respect to its possible forcing mechanisms, i.e. the absorption of solar radiation in the water vapor and ozone band, nonlinear tidal interactions, and gravity wave-tide interactions. In comparison to the forcing mechanisms of diurnal and semidiurnal tides, these terdiurnal forcings are less well understood and there are contradictory opinions about their respective relevance. In our simulations we remove the wavenumber 3 pattern for each forcing individually and analyze the remaining tidal wind and temperature fields. We find that the direct solar forcing is dominant and explains most of the migrating terdiurnal tide's amplitude. Nonlinear interactions due to other tides or gravity waves are most important during local winter. Further analyses show that the nonlinear forcings are locally counteracting the solar forcing due to destructive interferences. Therefore, tidal amplitudes can become even larger for simulations with removed nonlinear forcings.


2019 ◽  
Author(s):  
Christoph Geißler ◽  
Christoph Jacobi ◽  
Friederike Lilienthal

Abstract. We used a nonlinear mechanistic global circulation model to analyze the migrating quarterdiurnal tide (QDT) in the middle atmosphere with focus on its possible forcing mechanisms. These are absorption of solar radiation by ozone and water vapor, nonlinear tidal interactions, and gravity wave-tide interactions. We show a climatology of the QDT amplitudes, and we examined the contribution of the different forcing mechanisms on the QDT amplitude. To this end, we first extracted the QDT in the model tendency terms. Then, we separately removed the QDT contribution in different tendency terms. We find that the solar forcing mechanism is the most important one for the QDT, but also the nonlinear and gravity wave forcing mechanism play a role in certain seasons, latitudes and altitudes. Furthermore, destructive interference between the individual forcing mechanisms are observed. Therefore, tidal amplitudes partly become even larger in simulations with removed nonlinear or gravity wave forcing mechanism.


2019 ◽  
Author(s):  
Friederike Lilienthal ◽  
Christoph Jacobi

Abstract. We investigate the forcing mechanisms of the terdiurnal solar tide in the middle atmosphere using a mechanistic global circulation model. In order to quantify their individual contributions, we perform several model experiments and separate each forcing mechanism by switching off the remaining sources. We find that the primary excitation is owing to the terdiurnal component of solar radiation absorption in the troposphere and stratosphere. Secondary sources are nonlinear tide-tide interactions and gravity wave-tide interactions. Thus, although the solar heating clearly dominates the terdiurnal forcing in our simulations, we find that nonlinear tidal and gravity wave interactions contribute in certain seasons and altitudes. By slightly enhancing the different excitation sources, we test the sensitivity of the background circulation on these changes of the dynamics. As a result, the increase of terdiurnal gravity wave drag can strongly affect the middle and upper atmosphere dynamics, including an irregular change of the terdiurnal amplitude, a weakening of neutral winds in the thermosphere, and a significant temperature change in the thermosphere, depending on the strength of the forcing. On the contrary, the influence of nonlinear tidal interactions on the middle atmosphere background dynamics is rather small.


2020 ◽  
Vol 38 (2) ◽  
pp. 527-544 ◽  
Author(s):  
Christoph Geißler ◽  
Christoph Jacobi ◽  
Friederike Lilienthal

Abstract. We used a nonlinear mechanistic global circulation model to analyze the migrating quarterdiurnal tide (QDT) in the middle atmosphere with focus on its possible forcing mechanisms: the absorption of solar radiation by ozone and water vapor, nonlinear tidal interactions, and gravity wave–tide interactions. We show a climatology of the QDT amplitudes, and we examine the contribution of the different forcing mechanisms to the QDT amplitude. To this end, we first extracted the QDT from the model tendency terms and then removed the respective QDT contribution from the different tendency terms. We find that the solar forcing mechanism is the most important one for the QDT; however, the nonlinear and gravity wave forcing mechanisms also play a role in autumn and winter, particularly at lower and middle latitudes in the mesosphere and lower thermosphere. Furthermore, destructive interference between the individual forcing mechanisms is observed. Therefore, tidal amplitudes become even larger in simulations with the nonlinear or gravity wave forcing mechanisms removed.


2019 ◽  
Vol 37 (5) ◽  
pp. 943-953 ◽  
Author(s):  
Friederike Lilienthal ◽  
Christoph Jacobi

Abstract. We investigate the forcing mechanisms of the terdiurnal solar tide in the middle atmosphere using a mechanistic global circulation model. In order to quantify their individual contributions, we perform several model experiments and separate each forcing mechanism by switching off the remaining sources. We find that the primary excitation is owing to the terdiurnal component of solar radiation absorption in the troposphere and stratosphere. Secondary sources are nonlinear tide–tide interactions and gravity wave–tide interactions. Thus, although the solar heating clearly dominates the terdiurnal forcing in our simulations, we find that nonlinear tidal and gravity wave interactions contribute in certain seasons and at certain altitudes. By slightly enhancing the different excitation sources, we test the sensitivity of the background circulation to these changes of the dynamics. As a result, the increase of terdiurnal gravity wave drag can strongly affect the middle and upper atmosphere dynamics, including an irregular change of the terdiurnal amplitude, a weakening of neutral winds in the thermosphere, and a significant temperature change in the thermosphere, depending on the strength of the forcing. On the contrary, the influence of nonlinear tidal interactions on the middle atmosphere background dynamics is rather small.


2017 ◽  
Vol 35 (4) ◽  
pp. 785-798 ◽  
Author(s):  
Friederike Lilienthal ◽  
Christoph Jacobi ◽  
Torsten Schmidt ◽  
Alejandro de la Torre ◽  
Peter Alexander

Abstract. A mechanistic global circulation model is used to simulate the Southern Hemisphere stratospheric, mesospheric, and lower thermospheric circulation during austral winter. The model includes a gravity wave (GW) parameterization that is initiated by prescribed 2-D fields of GW parameters in the troposphere. These are based on observations of GW potential energy calculated using GPS radio occultations and show enhanced GW activity east of the Andes and around the Antarctic. In order to detect the influence of an observation-based and thus realistic 2-D GW distribution on the middle atmosphere circulation, we perform model experiments with zonal mean and 2-D GW initialization, and additionally with and without forcing of stationary planetary waves (SPWs) at the lower boundary of the model. As a result, we find additional forcing of SPWs in the stratosphere, a weaker zonal wind jet in the mesosphere, cooling of the mesosphere and warming near the mesopause above the jet. SPW wavenumber 1 (SPW1) amplitudes are generally increased by about 10 % when GWs are introduced being longitudinally dependent. However, at the upper part of the zonal wind jet, SPW1 in zonal wind and GW acceleration are out of phase, which reduces the amplitudes there.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
P. Goswami ◽  
J. Baruah

Concentrations of atmospheric pollutants are strongly influenced by meteorological parameters like rainfall, relative humidity and wind advection. Thus accurate specifications of the meteorological fields, and their effects on pollutants, are critical requirements for successful modelling of air pollution. In terms of their applications, pollutant concentration models can be used in different ways; in one, short term high resolution forecasts are generated to predict and manage urban pollution. Another application of dynamical pollution models is to generate outlook for a given airbasin, such as over a large city. An important question is application-specific model configuration for the meteorological simulations. While a meso-scale model provides a high-resolution configuration, a global model allows better simulation of large-sale fields through its global environment. Our objective is to comparatively evaluate a meso-scale atmospheric model (MM5) and atmospheric global circulation model (AGCM) in simulating different species of pollutants over different airbasins. In this study we consider four locations: ITO (Central Delhi), Sirifort (South Delhi), Bandra (Mumbai) and Karve Road (Pune). The results show that both the model configurations provide comparable skills in simulation of monthly and annual loads, although the skill of the meso-scale model is somewhat higher, especially at shorter time scales.


Sign in / Sign up

Export Citation Format

Share Document