scholarly journals Role of ambient ammonia in particulate ammonium formation at a rural site in the North China Plain

2018 ◽  
Vol 18 (1) ◽  
pp. 167-184 ◽  
Author(s):  
Zhaoyang Meng ◽  
Xiaobin Xu ◽  
Weili Lin ◽  
Baozhu Ge ◽  
Yulin Xie ◽  
...  

Abstract. The real-time measurements of NH3 and trace gases were conducted, in conjunction with semi-continuous measurements of water-soluble ions in PM2.5 at a rural site in the North China Plain (NCP) from May to September 2013 in order to better understand chemical characteristics of ammonia and the impact of secondary ammonium aerosols on formation in the NCP. Extremely high NH3 and NH4+ concentrations were observed after a precipitation event within 7–10 days following urea application. Elevated NH3 levels coincided with elevated NH4+, indicating that NH3 likely influenced particulate ammonium mass. For the sampling period, the average conversion ∕ oxidation ratios for NH4+ (NHR), SO42- (SOR), and NO3- (NOR) were estimated to be 0.30, 0.64, and 0.24, respectively. The increased NH3 concentrations, mainly from agricultural activities and regional transport, coincided with the prevailing meteorological conditions. The high NH3 level with NHR of about 0.30 indicates that the emission of NH3 in the NCP is much higher than needed for aerosol acid neutralisation, and NH3 plays an important role in the formation of secondary aerosols as a key neutraliser. The hourly data obtained were used to investigate gas–aerosol partitioning characteristics using the thermodynamic equilibrium model ISORROPIA-II. Modelled SO42-, NO3-, and NH3 values agree well with the measurements, while the modelled NH4+ values largely underestimate the measurements. Our observation and modelling results indicate that strong acids in aerosol are completely neutralised. Additional NH4+ exists in aerosol, probably a result of the presence of a substantial amount of oxalic and other diacids.

2017 ◽  
Author(s):  
Zhaoyang Meng ◽  
Xiaobin Xu ◽  
Weili Lin ◽  
Yulin Xie ◽  
Bo Song ◽  
...  

Abstract. The real-time measurements of NH3 and trace gases were conducted, in conjunction with semi-continuous measurements of water-soluble ions in PM2.5 at a rural site in the North China Plain (NCP) from May to September 2013 in order to better understand of chemical characteristics for ammonia, and of the impact on formation of secondary ammonium aerosols in the NCP. Extremely high NH3 and NH4+ concentrations were observed after a precipitation event within 7–10 days following urea application. Elevated NH3 levels coincided with elevated NH4+, suggesting that NH3 plays a vital role in enhancing particulate ammonium. For the sampling period, the average oxidation/conversion ratios for SO42− (SOR), NO3− (NOR) and NH4+ (NHR) were estimated to be 64 %, 24 % and 30 %, respectively. The increased NH3 concentrations mainly from agricultural activities, coincided with the prevailing meteorological conditions could promote the secondary transformation, resulting in higher hourly SOR, NOR and NHR. The concentrations of NH3, NH4+, and NHR had clear diurnal variations, which could be attributed to their sources, meteorological conditions, and formation mechanisms. The back trajectory analysis indicates that the transport of air masses from the North China Plain region contributed to the atmospheric NH3 variations, and both regional sources and long-distance transport from southeast played important roles in the observed ammonium aerosol at rural site in the NCP. The findings of this study are expected to facilitate developing future NH3 emission control policies for the North China Plain.


2016 ◽  
Vol 16 (17) ◽  
pp. 10985-11000 ◽  
Author(s):  
Yin Wang ◽  
Zhongming Chen ◽  
Qinqin Wu ◽  
Hao Liang ◽  
Liubin Huang ◽  
...  

Abstract. Measurements of atmospheric peroxides were made during Wangdu Campaign 2014 at Wangdu, a rural site in the North China Plain (NCP) in summer 2014. The predominant peroxides were detected to be hydrogen peroxide (H2O2), methyl hydroperoxide (MHP) and peroxyacetic acid (PAA). The observed H2O2 reached up to 11.3 ppbv, which was the highest value compared with previous observations in China at summer time. A box model simulation based on the Master Chemical Mechanism and constrained by the simultaneous observations of physical parameters and chemical species was performed to explore the chemical budget of atmospheric peroxides. Photochemical oxidation of alkenes was found to be the major secondary formation pathway of atmospheric peroxides, while contributions from alkanes and aromatics were of minor importance. The comparison of modeled and measured peroxide concentrations revealed an underestimation during biomass burning events and an overestimation on haze days, which were ascribed to the direct production of peroxides from biomass burning and the heterogeneous uptake of peroxides by aerosols, respectively. The strengths of the primary emissions from biomass burning were on the same order of the known secondary production rates of atmospheric peroxides during the biomass burning events. The heterogeneous process on aerosol particles was suggested to be the predominant sink for atmospheric peroxides. The atmospheric lifetime of peroxides on haze days in summer in the NCP was about 2–3 h, which is in good agreement with the laboratory studies. Further comprehensive investigations are necessary to better understand the impact of biomass burning and heterogeneous uptake on the concentration of peroxides in the atmosphere.


2016 ◽  
Author(s):  
Yin Wang ◽  
Zhongming Chen ◽  
Qinqin Wu ◽  
Hao Liang ◽  
Liubin Huang ◽  
...  

Abstract. Measurements of atmospheric peroxides were made during Wangdu Campaign 2014 at Wangdu, a rural site in the North China Plain (NCP) in summer 2014. The predominant peroxides were detected to be hydrogen peroxide (H2O2), methyl hydroperoxide (MHP) and peroxyacetic acid (PAA). The observed H2O2 reached up to 11.3 ppbv, which was the highest value compared with previous observations in China at summer time. A box model simulation based on the Master Chemical Mechanism and constrained by the simultaneous observations of physical parameters and chemical species was performed to explore the chemical budget of atmospheric peroxides. Photochemical oxidation of alkenes was found to be the major secondary formation pathway of atmospheric peroxides, while contributions from alkanes and aromatics were of minor importance. The comparison of modelled and measured peroxide concentrations revealed an underestimation during biomass burning events and an overestimation on haze days, which were ascribed to the direct production of peroxides from biomass burning and the heterogeneous uptake of peroxides by aerosols, respectively. The strengths of the primary emissions from biomass burning were on the same order of the known secondary production rates of atmospheric peroxides during the biomass burning events. The heterogeneous process on aerosol particles was suggested to be the predominant sink for atmospheric peroxides. The atmospheric lifetime of peroxides on haze days in summer in the NCP was about 2–3 hours, which is in good agreement with the laboratory studies. Further comprehensive investigations are necessary to better understand the impact of biomass burning and heterogeneous uptake on the concentration of peroxides in the atmosphere.


2021 ◽  
Vol 21 (9) ◽  
pp. 7409-7427
Author(s):  
Jiangchuan Tao ◽  
Ye Kuang ◽  
Nan Ma ◽  
Juan Hong ◽  
Yele Sun ◽  
...  

Abstract. Secondary aerosols (SAs, including secondary organic and inorganic aerosols, SOAs and SIAs) are predominant components of aerosol particles in the North China Plain (NCP), and their formation has significant impacts on the evolution of particle size distribution (PNSD) and hygroscopicity. Previous studies have shown that distinct SA formation mechanisms can dominate under different relative humidity (RH). This would lead to different influences of SA formation on the aerosol hygroscopicity and PNSD under different RH conditions. Based on the measurements of size-resolved particle activation ratio (SPAR), hygroscopicity distribution (GF-PDF), PM2.5 chemical composition, PNSD, meteorology and gaseous pollutants in a recent field campaign, McFAN (Multiphase chemistry experiment in Fogs and Aerosols in the North China Plain), conducted during the autumn–winter transition period in 2018 at a polluted rural site in the NCP, the influences of SA formation on cloud condensation nuclei (CCN) activity and CCN number concentration (NCCN) calculation under different RH conditions were studied. Results suggest that during daytime, SA formation could lead to a significant increase in NCCN and a strong diurnal variation in SPAR at supersaturations lower than 0.07 %. During periods with daytime minimum RH exceeding 50 % (high RH conditions), SA formation significantly contributed to the particle mass and size changes in a broad size range of 150 to 1000 nm, leading to NCCN (0.05 %) increases within the size range of 200 to 500 nm and mass concentration growth mainly for particles larger than 300 nm. During periods with daytime minimum RH below 30 % (low RH conditions), SA formation mainly contributed to the particle mass and size and NCCN changes for particles smaller than 300 nm. As a result, under the same amount of mass increase induced by SA formation, the increase of NCCN (0.05 %) was stronger under low RH conditions and weaker under high RH conditions. Moreover, the diurnal variations of the SPAR parameter (inferred from CCN measurements) due to SA formation varied with RH conditions, which was one of the largest uncertainties within NCCN predictions. After considering the SPAR parameter (estimated through the number fraction of hygroscopic particles or mass fraction of SA), the relative deviation of NCCN (0.05 %) predictions was reduced to within 30 %. This study highlights the impact of SA formation on CCN activity and NCCN calculation and provides guidance for future improvements of CCN predictions in chemical-transport models and climate models.


2016 ◽  
Author(s):  
X. Long ◽  
X. X. Tie ◽  
J. J. Cao ◽  
R. J. Huang ◽  
T. Feng ◽  
...  

Abstract. Crop field burning (CFB) has important effects on air pollution in China, but it is seldom quantified and reported in a regional scale, which is of great importance for the control strategies of CFB in China, especially in the North China Plain (NCP). With the provincial statistical data and open crop fires captured by satellite (MODIS), we extracted a detailed emission inventory of CFB during a heavy haze event from 6th to 12th October 2014. A regional dynamical and chemical model (WRF-Chem) was applied to investigate the impact of CFB on air pollution in NCP. The model simulations were compared with the in situ measurements of PM2.5 (particular matter with radius less than 2.5 μm) concentrations. The model evaluation shows that the correlation coefficients (R) between measured and calculated values exceeds 0.80 and absolute normalized mean bias (NMB) is no more than 14 %. In addition, the simulated meteorological parameters such as winds and planetary boundary layer height (PBLH) are also in good agreement with observations. The model was intensive used to study (1) the impacts of CFB and (2) the effect of mountains on regional air quality. The results show that the CFB occurred in southern NCP (SNCP) had significant effect on PM2.5 concentrations locally, causing a maximum of 35 % PM2.5 increase in SNCP. Because of south wind condition, the CFB pollution plume is subjective a long transport to northern NCP (NNCP-with several mega cities, including Beijing of the capital city in China), where there are no significant CFB occurrences, causing a maximum of 32 % PM2.5 increase in NNCP. As a result, the heavy haze in Beijing is enhanced by the CFB occurred in SNCP. Further more, there are two major mountains located in the western and northern NCP. Under the south wind condition, these mountains play important roles in enhancing the PM2.5 pollution in NNCP through the blocking and guiding effects. This study suggests that the PM2.5 emissions in SNCP region should be significantly limited in order to reduce the occurrences of heavy haze events in NNCP region, including the Beijing City.


2019 ◽  
Vol 19 (20) ◽  
pp. 12857-12874 ◽  
Author(s):  
Renmin Yuan ◽  
Xiaoye Zhang ◽  
Hao Liu ◽  
Yu Gui ◽  
Bohao Shao ◽  
...  

Abstract. Due to excessive anthropogenic emissions, heavy aerosol pollution episodes (HPEs) often occur during winter in the Beijing–Tianjin–Hebei (BTH) area of the North China Plain. Extensive observational studies have been carried out to understand the causes of HPEs; however, few measurements of vertical aerosol fluxes exist, despite them being the key to understanding vertical aerosol mixing, specifically during weak turbulence stages in HPEs. In the winter of 2016 and the spring of 2017 aerosol vertical mass fluxes were measured by combining large aperture scintillometer (LAS) observations, surface PM2.5 and PM10 mass concentrations, and meteorological observations, including temperature, relative humidity (RH), and visibility, at a rural site in Gucheng (GC), Hebei Province, and an urban site at the Chinese Academy of Meteorological Sciences (CAMS) in Beijing located 100 km to the northeast. These are based on the light propagation theory and surface-layer similarity theory. The near-ground aerosol mass flux was generally lower in winter than in spring and weaker in rural GC than in urban Beijing. This finding provides direct observational evidence for a weakened turbulence intensity and low vertical aerosol fluxes in winter and polluted areas such as GC. The HPEs included a transport stage (TS), an accumulative stage (AS), and a removal stage (RS). During the HPEs from 25 to 31 January 2017, in Beijing, the mean mass flux decreased by 51 % from 0.0049 mg m−2 s−1 in RSs to 0.0024 mg m−2 s−1 in the TSs. During the ASs, the mean mass flux decreased further to 0.00087 mg m−2 s−1, accounting for approximately one-third of the flux in the TSs. A similar reduction from the TSs to ASs was observed in the HPE from 16 to 22 December 2016 in GC. It can be seen that from the TS to the AS, the aerosol vertical turbulent flux decreased, but the aerosol particle concentration within the surface layer increased, and it is inferred that in addition to the contribution of regional transport from upwind areas during the TS, suppression of vertical turbulence mixing confining aerosols to a shallow boundary layer increased accumulation.


2018 ◽  
Vol 201 ◽  
pp. 235-246 ◽  
Author(s):  
Jianan Zou ◽  
Zirui Liu ◽  
Bo Hu ◽  
Xiaojuan Huang ◽  
Tianxue Wen ◽  
...  

2008 ◽  
Vol 8 (21) ◽  
pp. 6355-6363 ◽  
Author(s):  
Y. Wang ◽  
M. B. McElroy ◽  
J. W. Munger ◽  
J. Hao ◽  
H. Ma ◽  
...  

Abstract. Large intra-season differences in mixing ratios of CO and O3 were detected at Miyun, a rural site north of Beijing, in summer 2006. Despite an increase in mean daytime mixing ratio of CO from 500 ppbv in June to 700 ppbv in July, mean daytime O3 dropped from 67 ppbv in June to 50 ppbv in July and August. The observed changes in CO and O3 are attributed to the influence of the summer monsoonal circulation that develops over the North China Plain in July. Photochemical production of O3 is reduced as a consequence of increased cloudiness during July and August, as indicated by the strong negative correlation observed between O3 and satellite observations of cloud optical depth, with cloudiness having little effect on CO. The analysis suggests a strategy for emission controls that could be implemented in an economically efficient manner to minimize the frequency of high levels of O3 during summer in Beijing.


2016 ◽  
Vol 8 (4) ◽  
pp. 613-633 ◽  
Author(s):  
Lijuan Zhang ◽  
Jinxia Wang ◽  
Guangsheng Zhang ◽  
Qiuqiong Huang

Purpose The purpose of this paper is: to track the methods by which farmers access groundwater for irrigation in the North China Plain (NCP); to explore whether climate factors influence farmers’ decisions on the methods of groundwater access for irrigation; and to examine whether the amount of groundwater use for irrigation and crop yield systematically differ across groups of farmers using various methods of groundwater access, and how climate factors affect them. Design/methodology/approach Descriptive statistical analysis and econometric models are used on household survey data collected over several years and county-level climate data. Findings Over the past few decades, a significant share of farmers have switched the methods of groundwater access from collective tubewells to own tubewells or groundwater markets. Farmers who bought water from groundwater markets applied less water to wheat plots than those who had their own tubewells. However, wheat yield was not negatively affected. Both average climate conditions and long-term variations were found to be related to farmers’ choice of methods of groundwater access for irrigation. More frequent droughts and increasingly volatile temperatures both increased the likelihood of farmers gaining groundwater irrigation from markets. Originality/value The analysis results suggest farmers are using groundwater markets to help them adapt to climate change. Applying empirical analysis to identify the impact of the methods by which farmers access groundwater for irrigation on the amount of groundwater use and crop yield will help policy makers design reasonable adaptation policies for the NCP.


Sign in / Sign up

Export Citation Format

Share Document