scholarly journals The role of biomass burning as derived from the tropospheric CO vertical profiles measured by IAGOS aircraft in 2002–2017

2018 ◽  
Vol 18 (23) ◽  
pp. 17277-17306 ◽  
Author(s):  
Hervé Petetin ◽  
Bastien Sauvage ◽  
Mark Parrington ◽  
Hannah Clark ◽  
Alain Fontaine ◽  
...  

Abstract. This study investigates the role of biomass burning and long-range transport in the anomalies of carbon monoxide (CO) regularly observed along the tropospheric vertical profiles measured in the framework of the In-service Aircraft for a Global Observing System (IAGOS). Considering the high interannual variability of biomass burning emissions and the episodic nature of long-range pollution transport, one strength of this study is the amount of data taken into account, namely 30 000 vertical profiles at nine clusters of airports in Europe, North America, Asia, India and southern Africa over the period 2002–2017. As a preliminary, a brief overview of the spatiotemporal variability, latitudinal distribution, interannual variability and trends of biomass burning CO emissions from 14 regions is provided. The distribution of CO mixing ratios at different levels of the troposphere is also provided based on the entire IAGOS database (125 million CO observations). This study focuses on the free troposphere (altitudes above 2 km) where the long-range transport of pollution is favoured. Anomalies at a given airport cluster are here defined as departures from the local seasonally averaged climatological vertical profile. The intensity of these anomalies varies significantly depending on the airport, with maximum (minimum) CO anomalies of 110–150 (48) ppbv in Asia (Europe). Looking at the seasonal variation of the frequency of occurrence, the 25 % strongest CO anomalies appear reasonably well distributed throughout the year, in contrast to the 5 % or 1 % strongest anomalies that exhibit a strong seasonality with, for instance, more frequent anomalies during summertime in the northern United States, during winter/spring in Japan, during spring in south-east China, during the non-monsoon seasons in south-east Asia and south India, and during summer/fall in Windhoek, Namibia. Depending on the location, these strong anomalies are observed in different parts of the free troposphere. In order to investigate the role of biomass burning emissions in these anomalies, we used the SOFT-IO (SOft attribution using FlexparT and carbon monoxide emission inventories for In-situ Observation database) v1.0 IAGOS added-value products that consist of FLEXible PARTicle dispersion model (FLEXPART) 20-day backward simulations along all IAGOS aircraft trajectories, coupled with anthropogenic Monitoring Atmospheric Composition and Climate (MACC)/CityZEN EU projects (MACCity) and biomass burning Global Fire Assimilation System (GFAS) CO emission inventories and vertical injections. SOFT-IO estimates the contribution (in ppbv) of the recent (less than 20 days) primary worldwide CO emissions, tagged per source region. Biomass burning emissions are found to play an important role in the strongest CO anomalies observed at most airport clusters. The regional tags indicate a large contribution from boreal regions at airport clusters in Europe and North America during the summer season. In both Japan and south India, the anthropogenic emissions dominate all throughout the year, except for the strongest summertime anomalies observed in Japan that are due to Siberian fires. The strongest CO anomalies at airport clusters located in south-east Asia are induced by fires burning during spring in south-east Asia and during fall in equatorial Asia. In southern Africa, the Windhoek airport was mainly impacted by fires in Southern Hemisphere Africa and South America. To our knowledge, no other studies have used such a large dataset of in situ vertical profiles for deriving a climatology of the impact of biomass burning versus anthropogenic emissions on the strongest CO anomalies observed in the troposphere, in combination with information on the source regions. This study therefore provides both qualitative and quantitative information for interpreting the highly variable CO vertical distribution in several regions of interest.

Author(s):  
Hervé Petetin ◽  
Bastien Sauvage ◽  
Mark Parrington ◽  
Hannah Clark ◽  
Alain Fontaine ◽  
...  

<p><strong>Abstract.</strong> This study investigates the role of biomass burning and long-range transport in the anomalies of carbon monoxide (CO) regularly observed along the tropospheric vertical profiles measured in the framework of IAGOS. Considering the high interannual variability of biomass burning emissions and the episodic nature of pollution long-range transport, one strength of this study is the amount of data taken into account, namely 30,000 vertical profiles at 9 clusters of airports in Europe, North America, Asia, India and southern Africa over the period 2002&amp;ndash;2017. </p> <p> As a preliminary, a brief overview of the spatio-temporal variability, latitudinal distribution, interannual variability and trends of biomass burning CO emissions from 14 regions is provided. The distribution of CO mixing ratios at different levels of the troposphere is also provided based on the entire IAGOS database (125 million CO observations). </p> <p> This study focuses on the free troposphere (altitudes above 2<span class="thinspace"></span>km) where the long-range transport of pollution is favoured. Anomalies at a given airport cluster are here defined as departures from the local seasonally-averaged climatological vertical profile. The intensity of these anomalies varies significantly depending on the airport, with maximum (minimum) CO anomalies of 110&amp;ndash;150 (48)<span class="thinspace"></span>ppbv in Asia (Europe). Looking at the seasonal variation of the frequency of occurrence, the 25<span class="thinspace"></span>% strongest CO anomalies appears reasonably well distributed along the year, in contrast to the 5<span class="thinspace"></span>% or 1<span class="thinspace"></span>% strongest anomalies that exhibit a strong seasonality with for instance more frequent anomalies during summertime in northern United-States, during winter/spring in Japan, during spring in South-east China, during the non-monsoon seasons in south-east Asia and south India, and during summer/fall at Windhoek, Namibia. Depending on the location, these strong anomalies are observed in different parts of the free troposphere. </p> <p> In order to investigate the role of biomass burning emissions in these anomalies, we used the SOFT-IO v1.0 IAGOS added-value products that consist of FLEXPART 20-days backward simulations along all IAGOS aircraft trajectories, coupled with anthropogenic (MACCity) and biomass burning (GFAS) CO emission inventories and vertical injections. SOFT-IO estimates the contribution (in ppbv) of the recent (less than 20 days) primary worldwide CO emissions, tagged per source region. Biomass burning emissions are found to play an important role in the strongest CO anomalies observed at most airport clusters. The regional tags indicate a large contribution from boreal regions at airport clusters in Europe and North America during summer season. In both Japan and south India, the anthropogenic emissions dominate all along the year, except for the strongest summertime anomalies observed in Japan that are due to Siberian fires. The strongest CO anomalies at airport clusters located in south-east Asia are induced by fires burning during spring in south-east Asia and during fall in equatorial Asia. In southern Africa, the Windhoek airport was mainly impacted by fires in southern hemisphere Africa and South America. </p> <p> To our knowledge, no other studies have used such a large dataset of in situ vertical profiles for deriving a climatology of the impact of biomass burning versus anthropogenic emissions on the strongest CO anomalies observed in the troposphere, in combination with information on the source regions. This study therefore provides both qualitative and quantitative information for interpreting the highly variable CO vertical distribution in several regions of interest.</p>


2017 ◽  
Author(s):  
Kohei Ikeda ◽  
Hiroshi Tanimoto ◽  
Takafumi Sugita ◽  
Hideharu Akiyoshi ◽  
Yugo Kanaya ◽  
...  

Abstract. We implemented a tagged tracer method of black carbon (BC) into a global chemistry-transport model GEOS-Chem, examined the pathways and efficiency of long-range transport from a variety of anthropogenic and biomass burning emission sources to the Arctic, and quantified the source contributions of individual emissions. Firstly, we evaluated the simulated BC by comparing it with observations at the Arctic sites and found that the simulated seasonal variations were improved by implementing an aging parameterization and reducing the wet scavenging rate by ice clouds. For tagging BC, we added BC tracers distinguished by source types (anthropogenic and biomass burning) and regions; the global domain was divided into 16 and 27 regions for anthropogenic and biomass burning emissions, respectively. Our simulations showed that BC emitted from Europe and Russia was transported to the Arctic mainly in the lower troposphere during winter and spring. In particular, BC transported from Russia was widely spread over the Arctic in winter and spring, leading to a dominant contribution of 62 % to the Arctic BC near the surface as the annual mean. In contrast, BC emitted from East Asia was found to be transported in the middle troposphere into the Arctic mainly over the Okhotsk Sea and East Siberia during winter and spring. We identified an important window area, which allowed a strong incoming of East Asian BC to the Arctic (130°–180° E and 3–8 km altitude at 66° N). The model demonstrated that the contribution from East Asia to the Arctic had a maximum at about 5 km altitude due to uplifting during the long-range transport in early spring. The efficiency of BC transport from East Asia to the Arctic was smaller than that from other large source regions such as Europe, Russia and North America. However, the East Asian contribution was most important for BC in the middle troposphere (41 %) and BC burden over the Arctic (27 %) because of the large emissions from this region. These results suggested that the main sources of the Arctic BC differed with altitude. The contribution of all the anthropogenic sources to Arctic BC concentrations near the surface was dominant (90 %) on an annual basis. The contributions of biomass burning in boreal regions (Siberia, Alaska and Canada) to the annual total BC deposition onto the Arctic were estimated to be 12–15 %, which became the maximum during summer.


Tellus B ◽  
2014 ◽  
Vol 66 (1) ◽  
pp. 23733 ◽  
Author(s):  
Chuan-Yao Lin ◽  
Chun Zhao ◽  
Xiaohong Liu ◽  
Neng-Huei Lin ◽  
Wei-Nei Chen

2012 ◽  
Vol 12 (9) ◽  
pp. 3837-3855 ◽  
Author(s):  
J. S. Fu ◽  
N. C. Hsu ◽  
Y. Gao ◽  
K. Huang ◽  
C. Li ◽  
...  

Abstract. To evaluate the impact of biomass burning from Southeast Asia to East Asia, this study conducted numerical simulations during NASA's 2006 Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment (BASE-ASIA). Two typical episode periods (27–28 March and 13–14 April) were examined. Two emission inventories, FLAMBE and GFED, were used in the simulations. The influences during two episodes in the source region (Southeast Asia) contributed to the surface CO, O3 and PM2.5 concentrations as high as 400 ppbv, 20 ppbv and 80 μg m−3, respectively. The perturbations with and without biomass burning of the above three species during the intense episodes were in the range of 10 to 60%, 10 to 20% and 30 to 70%, respectively. The impact due to long-range transport could spread over the southeastern parts of East Asia and could reach about 160 to 360 ppbv, 8 to 18 ppbv and 8 to 64 μg m−3 on CO, O3 and PM2.5, respectively; the percentage impact could reach 20 to 50% on CO, 10 to 30% on O3, and as high as 70% on PM2.5. In March, the impact of biomass burning mainly concentrated in Southeast Asia and southern China, while in April the impact becomes slightly broader and even could go up to the Yangtze River Delta region. Two cross-sections at 15° N and 20° N were used to compare the vertical flux of biomass burning. In the source region (Southeast Asia), CO, O3 and PM2.5 concentrations had a strong upward transport from surface to high altitudes. The eastward transport becomes strong from 2 to 8 km in the free troposphere. The subsidence process during the long-range transport contributed 60 to 70%, 20 to 50%, and 80% on CO, O3 and PM2.5, respectively to surface in the downwind area. The study reveals the significant impact of Southeastern Asia biomass burning on the air quality in both local and downwind areas, particularly during biomass burning episodes. This modeling study might provide constraints of lower limit. An additional study is underway for an active biomass burning year to obtain an upper limit and climate effects.


2011 ◽  
Vol 11 (12) ◽  
pp. 32205-32243 ◽  
Author(s):  
J. S. Fu ◽  
N. C. Hsu ◽  
Y. Gao ◽  
K. Huang ◽  
C. Li ◽  
...  

Abstract. To evaluate the impact of biomass burning from Southeast Asia to East Asia, this study conducted numerical simulations during NASA's 2006 Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment (BASE-ASIA). Two typical episode periods (27–28 March and 13–14 April) were examined. Two emission inventories, FLAMBE and GFED, were used in the simulations. The influences during two episodes in the source region (Southeast Asia) contributed to the surface CO, O3 and PM2.5 concentrations as high as 400 ppbv, 20 ppbv and 80 μg m−3, respectively. The perturbations with and without biomass burning of the above three species during the intense episodes were in the range of 10 to 60%, 10 to 20% and 30 to 70%, respectively. The impact due to long-range transport could spread over the southeastern parts of East Asia and could reach about 160 to 360 ppbv, 8 to 18 ppbv and 8 to 64 μg m−3 on CO, O3 and PM2.5, respectively; the percentage impact could reach 20 to 50% on CO, 10 to 30% on O3, and as high as 70% on PM2.5. In March, the impact of biomass burning was mainly concentrated in Southeast Asia and Southern China, while in April the impact becomes slightly broader, potentially including the Yangtze River Delta region. Two cross-sections at 15° N and 20° N were used to compare the vertical flux of biomass burning. In the source region (Southeast Asia), CO, O3 and PM2.5 concentrations had a strong upward transport from surface to high altitudes. The eastward transport becomes strong from 2 to 8 km in the free troposphere. The subsidence process during the long-range transport contributed 60 to 70%, 20 to 50%, and 80% to CO, O3 and PM2.5, respectively to surface in the downwind area. The study reveals the significant impact of Southeastern Asia biomass burning on the air quality in both local and downwind areas, particularly during biomass burning episodes. This modeling study might provide lower limit constraints. An additional study is underway for an active biomass burning year to obtain an upper limit and climate effects.


Sign in / Sign up

Export Citation Format

Share Document