scholarly journals Effect of ecological restoration programs on dust concentrations in the North China Plain: a case study

2018 ◽  
Vol 18 (9) ◽  
pp. 6353-6366 ◽  
Author(s):  
Xin Long ◽  
Xuexi Tie ◽  
Guohui Li ◽  
Junji Cao ◽  
Tian Feng ◽  
...  

Abstract. In recent decades, the Chinese government has made a great effort in initiating large-scale ecological restoration programs (ERPs) to reduce the dust concentrations in China, especially for dust storm episodes. Using the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product, the ERP-induced land cover changes are quantitatively evaluated in this study. Two obvious vegetation protective barriers arise throughout China from the southwest to the northeast, which are well known as the “Green Great Wall” (GGW). Both the grass GGW and forest GGW are located between the dust source region (DSR) and the densely populated North China Plain (NCP). To assess the effect of ERPs on dust concentrations, a regional transport/dust model (WRF-DUST, Weather Research and Forecast model with dust) is applied to investigate the evolution of dust plumes during a strong dust storm episode from 2 to 8 March 2016. The WRF-DUST model generally performs reasonably well in reproducing the temporal variations and spatial distributions of near-surface [PMC] (mass concentration of particulate matter with aerodynamic diameter between 2.5 and 10 µm) during the dust storm event. Sensitivity experiments have indicated that the ERP-induced GGWs help to reduce the dust concentration in the NCP, especially in BTH (Beijing, Tianjin, and Hebei). When the dust storm is transported from the upwind DSR to the downwind NCP, the [PMC] reduction ranges from −5 to −15 % in the NCP, with a maximum reduction of −12.4 % (−19.2 µg m−3) in BTH and −7.6 % (−10.1 µg m−3) in the NCP. We find the dust plumes move up to the upper atmosphere and are transported from the upwind DSR to the downwind NCP, accompanied by dust decrease. During the episode, the forest GGW is nonsignificant in dust concentration control because it is of benefit for dry deposition and not for emission. Conversely, the grass GGW is beneficial in controlling dust erosion and is the dominant reason for [PMC] decrease in the NCP. Because the air pollution is severe in eastern China, especially in the NCP, and the contribution of dust episodes is significant, the reduction of dust concentrations will have important effects on severe air pollution. This study illustrates the considerable contribution of ERPs to the control of air pollution in China, especially in springtime.

2017 ◽  
Author(s):  
Xin Long ◽  
Xuexi Tie ◽  
Guohui Li ◽  
Junji Cao ◽  
Tian Feng ◽  
...  

Abstract. In recent years, Chinese government has taken great efforts in initiating large-scale ecological restoration programs (ERPs) to reduce the dust pollutions in China. Using a satellite measurement product of Moderate Resolution Imaging Spectroradiometer (MODIS), the changes in land cover are quantitatively evaluated in this study. We find that grass and forest are increased in berried lands and deserts in northwestern China, which locate in the upwind regions of the populated areas of the North China Plain (NCP) in eastern China. As a result, the changes in land cover could produce important impacts on the dust pollutions in eastern of China. To assess the effect of ERPs on dust pollutions, a regional transport/dust model (WRF-DUST, Weather Research and Forecast model with dust) is applied to investigate the evolution of dust pollutions during a strong dust episode (from 2 to 8 March 2016). The calculations are intensively evaluated by comparing with the measured data. Despite some model biases, the WRF-DUST model reasonably reproduced the temporal variations and spatial distributions during the dust storm event. The correlation coefficient (R) between the calculated and measured dust concentrations is 0.77. The indices of agreement (IOAs) are 0.96 and 0.83, and the normalized mean bias (NMBs) are 2 % and −15 % in the dust source region (DSR) and the downwind populated area of NCP, respectively, suggesting that the WRF-DUST model well captures the spatial variations and temporal evolutions of the dust storm event. The impacts of EPRs induced land cover changes on the dust pollutions in NCP are quantitatively assessed using the WRF-DUST model. We find that the ERPs significantly reduce the dust pollutions in NCP, especially in the heart area of NCP (BTH, Beijing-Tianjin-Hebei). During the episode when the dust storm was transported from the DSR to NCP, the reduction of dust pollutions induced by ERPs ranges from −5 % to −15 % in NCP, with the maximum reduction of −15.3 % (−21.0 μg m−3) in BTH, and −6.2 % (−9.3 μg m−3) in NCP. Because the air pollution is severe in eastern China, especially in NCP, the reduction of dust pollutions has important effects on the severe air pollutions. This study shows that ERPs help to reduce air pollutions in the region, especially in springtime, suggesting the important contributions of ERPs to the air pollution control in China.


2018 ◽  
Vol 18 (21) ◽  
pp. 15921-15935 ◽  
Author(s):  
Tianning Su ◽  
Zhanqing Li ◽  
Ralph Kahn

Abstract. The frequent occurrence of severe air pollution episodes in China has been a great concern and thus the focus of intensive studies. Planetary boundary layer height (PBLH) is a key factor in the vertical mixing and dilution of near-surface pollutants. However, the relationship between PBLH and surface pollutants, especially particulate matter (PM) concentration across China, is not yet well understood. We investigate this issue at ∼1600 surface stations using PBLH derived from space-borne and ground-based lidar, and discuss the influence of topography and meteorological variables on the PBLH–PM relationship. Albeit the PBLH–PM correlations are roughly negative for most cases, their magnitude, significance, and even sign vary considerably with location, season, and meteorological conditions. Weak or even uncorrelated PBLH–PM relationships are found over clean regions (e.g., Pearl River Delta), whereas nonlinearly negative responses of PM to PBLH evolution are found over polluted regions (e.g., North China Plain). Relatively strong PBLH–PM interactions are found when the PBLH is shallow and PM concentration is high, which typically corresponds to wintertime cases. Correlations are much weaker over the highlands than the plains regions, which may be associated with lighter pollution loading at higher elevations and contributions from mountain breezes. The influence of horizontal transport on surface PM is considered as well, manifested as a negative correlation between surface PM and wind speed over the whole nation. Strong wind with clean upwind air plays a dominant role in removing pollutants, and leads to obscure PBLH–PM relationships. A ventilation rate is used to jointly consider horizontal and vertical dispersion, which has the largest impact on surface pollutant accumulation over the North China Plain. As such, this study contributes to improved understanding of aerosol–planetary boundary layer (PBL) interactions and thus our ability to forecast surface air pollution.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Ruijie Qu ◽  
Xiaolin Cui ◽  
Haiming Yan ◽  
Enjun Ma ◽  
Jinyan Zhan

This study first tested and verified the ability of the Weather Research and Forecasting (WRF) model to simulate the near-surface temperature in the North China Plain. Then the static land cover data in the WRF were replaced, and thereafter the modified WRF model was used to explore the impacts of land cover change on the near-surface temperature in the North China Plain in year 1992 and year 2005. The results indicated that the land cover change in the North China Plain, which was characterized by the regional urbanization, had led to significant changes in the near-surface temperature, increasing the regional near-surface temperature by 0.03°C/year on average. The spatial pattern of the climate change basically corresponded to that of the land cover change; for example, the temperature increased most significantly in the regions mainly consisting of cities and built-up area. Besides, there were some variations in the degree and range of influence of the land cover change on the temperature among seasons. The result can provide important theoretical support for the adaptation to climate change, scientific land cover change management, and land use planning.


2016 ◽  
Author(s):  
X. Long ◽  
X. X. Tie ◽  
J. J. Cao ◽  
R. J. Huang ◽  
T. Feng ◽  
...  

Abstract. Crop field burning (CFB) has important effects on air pollution in China, but it is seldom quantified and reported in a regional scale, which is of great importance for the control strategies of CFB in China, especially in the North China Plain (NCP). With the provincial statistical data and open crop fires captured by satellite (MODIS), we extracted a detailed emission inventory of CFB during a heavy haze event from 6th to 12th October 2014. A regional dynamical and chemical model (WRF-Chem) was applied to investigate the impact of CFB on air pollution in NCP. The model simulations were compared with the in situ measurements of PM2.5 (particular matter with radius less than 2.5 μm) concentrations. The model evaluation shows that the correlation coefficients (R) between measured and calculated values exceeds 0.80 and absolute normalized mean bias (NMB) is no more than 14 %. In addition, the simulated meteorological parameters such as winds and planetary boundary layer height (PBLH) are also in good agreement with observations. The model was intensive used to study (1) the impacts of CFB and (2) the effect of mountains on regional air quality. The results show that the CFB occurred in southern NCP (SNCP) had significant effect on PM2.5 concentrations locally, causing a maximum of 35 % PM2.5 increase in SNCP. Because of south wind condition, the CFB pollution plume is subjective a long transport to northern NCP (NNCP-with several mega cities, including Beijing of the capital city in China), where there are no significant CFB occurrences, causing a maximum of 32 % PM2.5 increase in NNCP. As a result, the heavy haze in Beijing is enhanced by the CFB occurred in SNCP. Further more, there are two major mountains located in the western and northern NCP. Under the south wind condition, these mountains play important roles in enhancing the PM2.5 pollution in NNCP through the blocking and guiding effects. This study suggests that the PM2.5 emissions in SNCP region should be significantly limited in order to reduce the occurrences of heavy haze events in NNCP region, including the Beijing City.


2018 ◽  
Author(s):  
Tianning Su ◽  
Zhanqing Li ◽  
Ralph Kahn

Abstract. The frequent occurrence of severe air pollution episodes in China has raised great concerns with the public and scientific communities. Planetary boundary layer height (PBLH) is a key factor in the vertical mixing and dilution of near-surface pollutants. However, the relationship between PBLH and surface pollutants, especially particulate matter (PM) concentration, across the whole of China, is not yet well understood. We investigate this issue at ~ 1500 surface stations using PBLH derived from space-borne and ground-based lidar, and discuss the influence of topography and meteorological variables on the PBLH-PM relationship. A generally negative correlation is observed between PM and the PBLH, albeit varying greatly in magnitude with location and season. Correlations are much weaker over the highlands than plains regions, which may be associated with lower pollution levels and mountain breezes. The influence of horizontal transport on surface PM is considered as well, manifested as a negative correlation between surface PM and wind speed over the whole nation. Strong wind with clean upwind sources plays a dominant role in removing pollutants, and leads to weak PBLH-PM correlation. A ventilation rate is introduced to jointly consider horizontal and vertical dispersion, which has the largest impact on surface pollutant accumulation over the North China Plain. Aerosol absorption feedbacks also appear to affect the PBLH-PM relationship, as revealed via comparing air pollution in Beijing and Hong Kong. Absorbing aerosols in high concentrations likely contribute to the significant PBLH-PM correlation over the North China Plain (e.g., during winter). As major precursor emissions for secondary aerosols, sulfur dioxide, nitrogen dioxide, and carbon monoxide have similar negative responses to increased PBLH, whereas ozone is positively correlated with PBLH over most regions, which may be caused by heterogeneous reactions and photolysis rates.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1037
Author(s):  
Siyang Cheng ◽  
Junli Jin ◽  
Jianzhong Ma ◽  
Xiaobin Xu ◽  
Liang Ran ◽  
...  

Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements were performed during the summer (13 June–20 August) of 2014 at a rural site in North China Plain. The vertical profiles of aerosol extinction (AE) in the lower troposphere were retrieved to analyze the temporal variations of AE profiles, near-surface AE, and aerosol optical depth (AOD). The average AOD and near-surface AE over the period of study were 0.51 ± 0.26 and 0.33 ± 0.18 km−1 during the effective observation period, respectively. High AE events and elevated AE layers were identified based on the time series of hourly AE profiles, near-surface AEs and AODs. It is found that in addition to the planetary boundary layer height (PBLH) and relative humidity (RH), the variations in the wind field have large impacts on the near-surface AE, AOD, and AE profile. Among 16 wind sectors, higher AOD or AE occur mostly in the directions of the cities upstream. The diurnal variations of the AE profiles, AODs and near-surface AEs are significant and influenced mainly by the source emissions, PBLH, and RH. The AE profile shape from MAX-DOAS measurement is generally in agreement with that from light detection and ranging (lidar) observations, although the AE absolute levels are different. Overall, ground-based MAX-DOAS can serve as a supplement to measure the AE vertical profiles in the lower troposphere.


2019 ◽  
Author(s):  
Jiarui Wu ◽  
Naifang Bei ◽  
Bo Hu ◽  
Suixin Liu ◽  
Meng Zhou ◽  
...  

Abstract. Atmospheric aerosols or fine particulate matters (PM2.5) scatter or absorb a fraction of the incoming solar radiation to cool or warm the atmosphere, decreasing surface temperature and altering atmospheric stability to further affect the dispersion of air pollutants in the planetary boundary layer (PBL). In the present study, simulations during a persistent and heavy haze pollution episode from 05 December 2015 to 04 January 2016 in the North China Plain (NCP) were performed using the WRF-CHEM model to comprehensively quantify contributions of the aerosol shortwave radiative feedback (ARF) to near-surface PM2.5 mass concentrations. The WRF-CHEM model generally performs well in simulating the temporal variations and spatial distributions of air pollutants concentrations compared to observations at ambient monitoring sites in NCP, and the simulated diurnal variations of aerosol species are also consistent with the measurements in Beijing. Additionally, the model simulates well the aerosol radiative properties, the downward shortwave flux, and the PBL height against observations in NCP during the episode. During the episode, the ARF deteriorates the haze pollution, increasing the near-surface PM2.5 concentration in NCP by 10.2 μg m−3 or with a contribution of 7.8 %. Sensitivity studies have revealed that high loadings of PM2.5 during the episode attenuate the incoming solar radiation down to the surface, cooling the temperature of the low-level atmosphere to suppress development of PBL and decrease the surface wind speed, further enhancing the relative humidity and hindering the PM2.5 dispersion and consequently exacerbating the haze pollution in NCP. The ensemble analysis indicates that when the near-surface PM2.5 mass concentration increases from around 50 to several hundred μg m−3, the ARF contributes to the near-surface PM2.5 by more than 20 % during daytime in NCP, substantially aggravating the heavy haze formation. However, when the near-surface PM2.5 concentration is less than around 50 μg m−3, the ARF generally reduces the near-surface PM2.5 concentration due to the consequent perturbation of atmospheric dynamic fields.


2019 ◽  
Author(s):  
Mingchen Ma ◽  
Yang Gao ◽  
Yuhang Wang ◽  
Shaoqing Zhang ◽  
L. Ruby Leung ◽  
...  

Abstract. In the summer of 2017, heavy ozone pollution swamped most of the North China Plain (NCP), with the maximum regional average of daily maximum 8-h ozone concentration (MDA8) reaching almost 120 ppbv. In light of the continuing reduction of anthropogenic emissions in China, the underlying mechanisms for the occurrences of these regional extreme ozone episodes are elucidated from two perspectives: meteorology and biogenic emissions. The significant positive correlation between MDA8 and temperature, which is amplified during heat waves concomitant with stagnant air and no precipitation, supports the crucial role of meteorology in driving high ozone concentrations. We also find that biogenic emissions are enhanced due to factors previously not considered. During the heavy ozone pollution episodes in June 2017, biogenic emissions driven by high vapor pressure deficit (VPD), land cover change and urban landscape yield an extra mean MDA8 ozone of 3.08, 2.79 and 4.74 ppbv, respectively over the NCP, which together contribute as much to MDA8 ozone as biogenic emissions simulated using the land cover of 2003 and ignoring VPD and urban landscape. In Beijing, the biogenic emission increase due to urban landscape has a comparable effect on MDA8 ozone to the combined effect of high VPD and land cover change between 2003 and 2016. This study highlights the vital contributions of heat waves, land cover change and urbanization to the occurrence of extreme ozone episode, with significant implications for ozone pollution control in a future when heat wave frequency and intensity are projected to increase under global warming.


Sign in / Sign up

Export Citation Format

Share Document