scholarly journals Core and margin in warm convective clouds – Part 1: Core types and evolution during a cloud's lifetime

2019 ◽  
Vol 19 (16) ◽  
pp. 10717-10738 ◽  
Author(s):  
Reuven H. Heiblum ◽  
Lital Pinto ◽  
Orit Altaratz ◽  
Guy Dagan ◽  
Ilan Koren

Abstract. The properties of a warm convective cloud are determined by the competition between the growth and dissipation processes occurring within it. One way to observe and follow this competition is by partitioning the cloud to core and margin regions. Here we look at three core definitions, namely positive vertical velocity (Wcore), supersaturation (RHcore), and positive buoyancy (Bcore), and follow their evolution throughout the lifetime of warm convective clouds. Using single cloud and cloud field simulations with bin-microphysics schemes, we show that the different core types tend to be subsets of one another in the following order: Bcore⊆RHcore⊆Wcore. This property is seen for several different thermodynamic profile initializations and is generally maintained during the growing and mature stages of a cloud's lifetime. This finding is in line with previous works and theoretical predictions showing that cumulus clouds may be dominated by negative buoyancy at certain stages of their lifetime. The RHcore–Wcore pair is most interchangeable, especially during the growing stages of the cloud. For all three definitions, the core–shell model of a core (positive values) at the center of the cloud surrounded by a shell (negative values) at the cloud periphery applies to over 80 % of a typical cloud's lifetime. The core–shell model is less appropriate in larger clouds with multiple cores displaced from the cloud center. Larger clouds may also exhibit buoyancy cores centered near the cloud edge. During dissipation the cores show less overlap, reduce in size, and may migrate from the cloud center.

2021 ◽  
Vol 1028 ◽  
pp. 193-198
Author(s):  
Budi Adiperdana ◽  
Nadya Larasati Kartika ◽  
Risdiana

Ising core-shell model was proposed to reconstruct superparamagnetism hysteresis in nano-goethite (α-FeOOH). Core and shell set as antiferromagnetic and paramagnetic state respectively. Core and shell radius varies until the theoretical hysteresis fit with experiment hysteresis. At low temperature, the hysteresis reconstructed nicely with 55% antiferromagnetic core contribution and 45% paramagnetic shell contribution. At high temperature, the core-shell model show unrealistic result compared to the pure paramagnetic state.


Author(s):  
Bogdan Palosz ◽  
Svetlana Stelmakh ◽  
Ewa Grzanka ◽  
Stanislaw Gierlotka ◽  
Witold Palosz

In this review work we discuss applicability of Bragg scattering to examination of nanocrystals. We approximate the structure of nanograins by a commonly accepted core-shell model. We show that, for principal reasons, the Bragg equation is not applicable directly to nanocrystals. We use the Bragg relation through application of the


2014 ◽  
Vol 115 ◽  
pp. 352-357 ◽  
Author(s):  
M. Safari ◽  
M. Farkhondeh ◽  
M. Pritzker ◽  
M. Fowler ◽  
Taeyoung Han ◽  
...  

2006 ◽  
Vol 110 (15) ◽  
pp. 4985-4999 ◽  
Author(s):  
Ivan R. Piletic ◽  
David E. Moilanen ◽  
D. B. Spry ◽  
Nancy E. Levinger ◽  
M. D. Fayer

2014 ◽  
Vol 16 (39) ◽  
pp. 21645-21656 ◽  
Author(s):  
Elisa Gambuzzi ◽  
Alfonso Pedone

New Ce3+–O and Ce4+–O parameters for a force-field based on the core–shell model were developed and applied to get insights into the structure of five silicophosphate glasses with increasing Ce2O3 and P2O5 content.


1995 ◽  
Vol 22 (1) ◽  
pp. 13-26 ◽  
Author(s):  
Garth W. Martin
Keyword(s):  

2018 ◽  
Author(s):  
Reuven H. Heiblum ◽  
Lital Pinto ◽  
Orit Altaratz ◽  
Guy Dagan ◽  
Ilan Koren

Abstract. The effects of aerosol on warm convective cloud cores are evaluated using single cloud and cloud field simulations. As presented in Part I, the Bcore ⊆ RHcore ⊆ Wcore property is seen during growth of warm convective clouds. We show that this property is kept irrespective of aerosol concentration. During dissipation core fractions generally decrease with less overlap between cores. However, for clouds that develop in low aerosol concentrations capable of producing precipitation, Bcore and subsequently Wcore volume fractions may increase during dissipation (i.e. loss of cloud mass). The RHcore volume fraction decreases during cloud lifetime and shows minor sensitivity to aerosol concentration. It is shown that a Bcore forms due to two processes: (i) Convection – condensation within supersaturated updrafts and release of latent heat, (ii) Adiabatic heating due to weak downdrafts. The former process occurs during cloud growth for all aerosol concentrations. The latter process only occurs for low aerosol concentrations during dissipation and precipitation stages where large mean drop sizes permit slow evaporation rates. The aerosol effect on the diffusion efficiencies play a crucial role in the development of the cloud and its partition to core and margin. Using the RHcore definition, it is shown that the total cloud mass is mostly dictated by core processes, while the total cloud volume is mostly dictated by margin processes. Increase in aerosol concentration increases the core (mass and volume) due to enhanced condensation but also decreases the margin due to evaporation. In clean clouds larger droplets evaporate much slower, enabling preservation of cloud volume and even increase by dilution (detrainment while losing mass). This explains how despite having smaller cores and less mass, cleaner clouds may live longer and grow to larger sizes.


2021 ◽  
Vol 21 (21) ◽  
pp. 16203-16217
Author(s):  
Eshkol Eytan ◽  
Ilan Koren ◽  
Orit Altaratz ◽  
Mark Pinsky ◽  
Alexander Khain

Abstract. The process of mixing in warm convective clouds and its effects on microphysics are crucial for an accurate description of cloud fields, weather, and climate. Still, they remain open questions in the field of cloud physics. Adiabatic regions in the cloud could be considered non-mixed areas and therefore serve as an important reference to mixing. For this reason, the adiabatic fraction (AF) is an important parameter that estimates the mixing level in the cloud in a simple way. Here, we test different methods of AF calculations using high-resolution (10 m) simulations of isolated warm cumulus clouds. The calculated AFs are compared with a normalized concentration of a passive tracer, which is a measure of dilution by mixing. This comparison enables the examination of how well the AF parameter can determine mixing effects and the estimation of the accuracy of different approaches used to calculate it. Comparison of three different methods to derive AF, with the passive tracer, shows that one method is much more robust than the others. Moreover, this method's equation structure also allows for the isolation of different assumptions that are often practiced when calculating AF such as vertical profiles, cloud-base height, and the linearity of AF with height. The use of a detailed spectral bin microphysics scheme allows an accurate description of the supersaturation field and demonstrates that the accuracy of the saturation adjustment assumption depends on aerosol concentration, leading to an underestimation of AF in pristine environments.


2020 ◽  
Author(s):  
Yuwei Zhang ◽  
Jiwen Fan ◽  
Zhanqing Li ◽  
Daniel Rosenfeld

Abstract. Aerosol–cloud interactions remain largely uncertain in predicting their impacts on weather and climate. Cloud microphysics parameterization is one of the factors leading to the large uncertainty. Here we investigate the impacts of anthropogenic aerosols on the convective intensity and precipitation of a thunderstorm occurring on 19 June 2013 over Houston with the Chemistry version of Weather Research and Forecast model (WRF‐Chem) using the Morrison two-moment bulk scheme and spectral-bin microphysics (SBM) scheme. We find that the SBM predicts a deep convective cloud agreeing better with observations in terms of reflectivity and precipitation compared with the Morrison bulk scheme that has been used in many weather and climate models. With the SBM scheme, we see a significant invigoration effect on convective intensity and precipitation by anthropogenic aerosols mainly through enhanced condensation latent heating (i.e., the warm-phase invigoration). Whereas such effect is absent with the Morrison two-moment bulk microphysics, mainly due to limitations of the saturation adjustment approach for droplet condensation and evaporation calculation.


Sign in / Sign up

Export Citation Format

Share Document