scholarly journals Role of base strength, cluster structure and charge in sulfuric-acid-driven particle formation

2019 ◽  
Vol 19 (15) ◽  
pp. 9753-9768 ◽  
Author(s):  
Nanna Myllys ◽  
Jakub Kubečka ◽  
Vitus Besel ◽  
Dina Alfaouri ◽  
Tinja Olenius ◽  
...  

Abstract. In atmospheric sulfuric-acid-driven particle formation, bases are able to stabilize the initial molecular clusters and thus enhance particle formation. The enhancing potential of a stabilizing base is affected by different factors, such as the basicity and abundance. Here we use weak (ammonia), medium strong (dimethylamine) and very strong (guanidine) bases as representative atmospheric base compounds, and we systematically investigate their ability to stabilize sulfuric acid clusters. Using quantum chemistry, we study proton transfer as well as intermolecular interactions and symmetry in clusters, of which the former is directly related to the base strength and the latter to the structural effects. Based on the theoretical cluster stabilities and cluster population kinetics modeling, we provide molecular-level mechanisms of cluster growth and show that in electrically neutral particle formation, guanidine can dominate formation events even at relatively low concentrations. However, when ions are involved, charge effects can also stabilize small clusters for weaker bases. In this case the atmospheric abundance of the bases becomes more important, and thus ammonia is likely to play a key role. The theoretical findings are validated by cluster distribution experiments, as well as comparisons to previously reported particle formation rates, showing a good agreement.

2019 ◽  
Author(s):  
Nanna Myllys ◽  
Jakub Kubečka ◽  
Vitus Besel ◽  
Dina Alfaouri ◽  
Tinja Olenius ◽  
...  

Abstract. In atmospheric sulfuric acid-driven particle formation, bases are able to stabilize the initial molecular clusters, and thus enhance particle formation. The enhancing potential of a stabilizing base is affected by different factors, such as the basicity and abundance. Here we use weak (ammonia), medium strong (dimethylamine) and very strong (guanidine) bases as representative atmospheric base compounds, and systematically investigate their ability to stabilize sulfuric acid clusters. Using quantum chemistry, we study proton transfer as well as intermolecular interactions and symmetry in clusters, of which the former is directly related to the base strength and the latter to the structural effects. Based on the theoretical cluster stabilities and cluster population kinetics modeling, we provide molecular-level mechanisms of cluster growth and show that in electrically neutral particle formation, guanidine can dominate formation events even at relatively low concentrations. However, when ions are involved, charge effects can stabilize small clusters also for weaker bases. In this case the atmospheric abundance of the bases becomes more important, and thus ammonia is likely to play a key role. The theoretical findings are validated by cluster distribution experiments, as well as comparisons to previously reported particle formation rates, showing a good agreement.


2021 ◽  
Vol 48 (7) ◽  
Author(s):  
Chao Yan ◽  
Rujing Yin ◽  
Yiqun Lu ◽  
Lubna Dada ◽  
Dongsen Yang ◽  
...  

2018 ◽  
Vol 18 (2) ◽  
pp. 845-863 ◽  
Author(s):  
Andreas Kürten ◽  
Chenxi Li ◽  
Federico Bianchi ◽  
Joachim Curtius ◽  
António Dias ◽  
...  

Abstract. A recent CLOUD (Cosmics Leaving OUtdoor Droplets) chamber study showed that sulfuric acid and dimethylamine produce new aerosols very efficiently and yield particle formation rates that are compatible with boundary layer observations. These previously published new particle formation (NPF) rates are reanalyzed in the present study with an advanced method. The results show that the NPF rates at 1.7 nm are more than a factor of 10 faster than previously published due to earlier approximations in correcting particle measurements made at a larger detection threshold. The revised NPF rates agree almost perfectly with calculated rates from a kinetic aerosol model at different sizes (1.7 and 4.3 nm mobility diameter). In addition, modeled and measured size distributions show good agreement over a wide range of sizes (up to ca. 30 nm). Furthermore, the aerosol model is modified such that evaporation rates for some clusters can be taken into account; these evaporation rates were previously published from a flow tube study. Using this model, the findings from the present study and the flow tube experiment can be brought into good agreement for the high base-to-acid ratios (∼ 100) relevant for this study. This confirms that nucleation proceeds at rates that are compatible with collision-controlled (a.k.a. kinetically controlled) NPF for the conditions during the CLOUD7 experiment (278 K, 38 % relative humidity, sulfuric acid concentration between 1 × 106 and 3 × 107 cm−3, and dimethylamine mixing ratio of ∼ 40 pptv, i.e., 1 × 109 cm−3).


2011 ◽  
Vol 11 (8) ◽  
pp. 24165-24189 ◽  
Author(s):  
Z. B. Wang ◽  
M. Hu ◽  
D. L. Yue ◽  
J. Zheng ◽  
R. Y. Zhang ◽  
...  

Abstract. New particle formation (NPF) is considered as an important mechanism for gas-to-particle transformation, and gaseous sulfuric acid is believed as a curcial precursor. Up to now few field-based studies on nucleation mechanisms and the role of sulfuric acid were conducted in China. In this study, simultaneously measurements of particle number size distributions and gaseous sulfuric acid concentrations were performed from July to September in 2008. Totally, 22 new particle formation events were observed during the entire 85 campaign days. The results show that the condensation sink of pre-existing particles is one of the limiting factors to determine the occurrence of nucleation events in Beijing. The concentrations of gaseous sulfuric acid show good correlations with freshly nucleated particles (N3–6) and formation rates (J3 and J1.5). The power-law relationship between H2SO4 concentration and N3–6 or J was adopted to explore the nucleation mechanism. The exponents range from 1 to 5. More than half of the NPF events exhibit an exponent larger than 2.5. For these cases, the thermodynamic process works better than the activation or kinetic nucleation theories to explain the nucleation events in urban atmosphere of Beijing.


2010 ◽  
Vol 10 (10) ◽  
pp. 4953-4960 ◽  
Author(s):  
D. L. Yue ◽  
M. Hu ◽  
R. Y. Zhang ◽  
Z. B. Wang ◽  
J. Zheng ◽  
...  

Abstract. Simultaneous measurements of gaseous sulfuric acid and particle number size distributions were performed to investigate aerosol nucleation and growth during CAREBeijing-2008. The analysis of the measured aerosols and sulfuric acid with an aerosol dynamic model shows the dominant role of sulfuric acid in new particle formation (NPF) process but also in the subsequent growth in Beijing. Based on the data of twelve NPF events, the average formation rates (2–13 cm−3 s−1) show a linear correlation with the sulfuric acid concentrations (R2=0.85). Coagulation seems to play a significant role in reducing the number concentration of nucleation mode particles with the ratio of the coagulation loss to formation rate being 0.41±0.16. The apparent growth rates vary from 3 to 11 nm h−1. Condensation of sulfuric acid and its subsequent neutralization by ammonia and coagulation contribute to the apparent particle growth on average 45±18% and 34±17%, respectively. The 30% higher concentration of sulfate than organic compounds in particles during the seven sulfur-rich NPF events but 20% lower concentration of sulfate during the five sulfur-poor type suggest that organic compounds are an important contributor to the growth of the freshly nucleated particles, especially during the sulfur-poor cases.


2011 ◽  
Vol 11 (24) ◽  
pp. 12663-12671 ◽  
Author(s):  
Z. B. Wang ◽  
M. Hu ◽  
D. L. Yue ◽  
J. Zheng ◽  
R. Y. Zhang ◽  
...  

Abstract. New particle formation (NPF) is considered as an important mechanism for gas-to-particle transformation, and gaseous sulfuric acid is believed as a crucial precursor. Up to now few field-based studies on nucleation mechanisms and the role of sulfuric acid were conducted in China. In this study, simultaneously measurements of particle number size distributions and gaseous sulfuric acid concentrations were performed from July to September in 2008. Totally, 22 new particle formation events were observed during the entire 85 campaign days. The results show that in the case of both higher source and sink values, the result of the competition between source and sink is more likely the key limiting factor to determine the observation of NPF events in Beijing. The concentrations of gaseous sulfuric acid show good correlations with freshly nucleated particles (N3-6 and formation rates (J3 and J1.5. The power-law relationship between H2SO4 concentration and N3-6 or J is adopted to explore the nucleation mechanism. The exponents are showed a great range (from 1 to 7). More than half of the NPF events exhibit an exponent larger than 2.5. For these cases, the thermodynamic process works better than the activation or kinetic nucleation theories to explain the nucleation events in urban atmosphere of Beijing.


2010 ◽  
Vol 10 (2) ◽  
pp. 2711-2729 ◽  
Author(s):  
D. L. Yue ◽  
M. Hu ◽  
R. Y. Zhang ◽  
Z. B. Wang ◽  
J. Zheng ◽  
...  

Abstract. Simultaneous measurements of gaseous sulfuric acid and particle number size distributions were performed to investigate aerosol nucleation and growth during CAREBeijing-2008. The analysis of the measured aerosols and sulfuric acid with an aerosol dynamic model shows the dominant role of sulfuric acid in new particle formation (NPF) process but also in the subsequent growth in Beijing. Based on the data of twelve NPF events, the average formation rates (2–13 cm−3 s−1) show a linear correlation with the sulfuric acid concentrations (R2=0.85). Coagulation seems to play a significant role in reducing the number concentration of nucleation mode particles with the ratio of the coagulation loss to formation rate being 0.41±0.16. The apparent growth rates vary from 3 to 11 nm h−1. Condensation of sulfuric acid and its subsequent neutralization by ammonia and coagulation contribute to the apparent particle growth on average 45±18% and 34±17%, respectively. The 30% higher concentration of sulfate than organic compounds in particles during the seven sulfur-rich NPF events but 20% lower concentration of sulfate during the five sulfur-poor type suggest that organic compounds are an important contributor to the growth of the freshly nucleated particles, especially during the sulfur-poor cases.


2018 ◽  
Vol 20 (25) ◽  
pp. 17406-17414 ◽  
Author(s):  
Ling Liu ◽  
Hao Li ◽  
Haijie Zhang ◽  
Jie Zhong ◽  
Yang Bai ◽  
...  

The cluster formation mechanism indicates that nitric acid can connect the smaller and larger clusters, enhancing sulfuric acid–ammonia cluster formation rates.


2017 ◽  
Author(s):  
Andreas Kürten ◽  
Chenxi Li ◽  
Federico Bianchi ◽  
Joachim Curtius ◽  
António Dias ◽  
...  

Abstract. A recent CLOUD (Cosmics Leaving OUtdoor Droplets) chamber study showed that sulfuric acid and dimethylamine produce new aerosols very efficiently, and yield particle formation rates that are compatible with boundary layer observations. These previously published new particle formation (NPF) rates are re-analyzed in the present study with an advanced method. The results show that the NPF rates at 1.7 nm are more than a factor of 10 faster than previously published due to earlier approximations in correcting particle measurements made at larger detection threshold. The revised NPF rates agree almost perfectly with calculated rates from a kinetic aerosol model at different sizes (1.7 nm and 4.3 nm mobility diameter). In addition, modeled and measured size distributions show good agreement over a wide range (up to ca. 30 nm). Furthermore, the aerosol model is modified such that evaporation rates for some clusters can be taken into account; these evaporation rates were previously published from a flow tube study. Using this model, the findings from the present study and the flow tube experiment can be brought into good agreement. This confirms that nucleation proceeds at rates that are compatible with collision-controlled (a.k.a. kinetically-controlled) new particle formation for the conditions during the CLOUD7 experiment (278 K, 38 % RH, sulfuric acid concentration between 1 × 106 and 3 × 107 cm−3 and dimethylamine mixing ratio of ~ 40 pptv). Finally, the simulation of atmospheric new particle formation reveals that even tiny mixing ratios of dimethylamine (0.1 pptv) yield NPF rates that could explain significant boundary layer particle formation. This highlights the need for improved speciation and quantification techniques for atmospheric gas-phase amine measurements.


Sign in / Sign up

Export Citation Format

Share Document