scholarly journals Impact of the South Asian monsoon outflow on atmospheric hydroperoxides in the upper troposphere

2020 ◽  
Vol 20 (21) ◽  
pp. 12655-12673
Author(s):  
Bettina Hottmann ◽  
Sascha Hafermann ◽  
Laura Tomsche ◽  
Daniel Marno ◽  
Monica Martinez ◽  
...  

Abstract. During the OMO (Oxidation Mechanism Observation) mission, trace gas measurements were performed on board the HALO (High Altitude Long Range) research aircraft in summer 2015 in order to investigate the outflow of the South Asian summer monsoon and its influence on the composition of the Asian monsoon anticyclone (AMA) in the upper troposphere over the eastern Mediterranean and the Arabian Peninsula. This study focuses on in situ observations of hydrogen peroxide (H2O2obs) and organic hydroperoxides (ROOHobs) as well as their precursors and loss processes. Observations are compared to photostationary-state (PSS) calculations of H2O2PSS and extended by a separation of ROOHobs into methyl hydroperoxide (MHPPSS) and inferred unidentified hydroperoxide (UHPPSS) mixing ratios using PSS calculations. Measurements are also contrasted to simulations with the general circulation ECHAM–MESSy for Atmospheric Chemistry (EMAC) model. We observed enhanced mixing ratios of H2O2obs (45 %), MHPPSS (9 %), and UHPPSS (136 %) in the AMA relative to the northern hemispheric background. Highest concentrations for H2O2obs and MHPPSS of 211 and 152 ppbv, respectively, were found in the tropics outside the AMA, while for UHPPSS, with 208 pptv, highest concentrations were found within the AMA. In general, the observed concentrations are higher than steady-state calculations and EMAC simulations by a factor of 3 and 2, respectively. Especially in the AMA, EMAC underestimates the H2O2EMAC (medians: 71 pptv vs. 164 pptv) and ROOHEMAC (medians: 25 pptv vs. 278 pptv) mixing ratios. Longitudinal gradients indicate a pool of hydroperoxides towards the center of the AMA, most likely associated with upwind convection over India. This indicates main contributions of atmospheric transport to the local budgets of hydroperoxides along the flight track, explaining strong deviations from steady-state calculations which only account for local photochemistry. Underestimation of H2O2EMAC by approximately a factor of 2 in the Northern Hemisphere (NH) and the AMA and overestimation in the Southern Hemisphere (SH; factor 1.3) are most likely due to uncertainties in the scavenging efficiencies for individual hydroperoxides in deep convective transport to the upper troposphere, corroborated by a sensitivity study. It seems that the observed excess UHPPSS is excess MHP transported to the west from an upper tropospheric source related to convection in the summer monsoon over Southeast Asia.

2020 ◽  
Author(s):  
Bettina Hottmann ◽  
Sascha Hafermann ◽  
Laura Tomsche ◽  
Daniel Marno ◽  
Monica Martinez ◽  
...  

Abstract. During the OMO (Oxidation Mechanism Observation) mission, trace gas measurements were performed onboard the HALO (High Altitude LOng range) research aircraft in summer 2015 in order to investigate the outflow of the south Asian summer monsoon and its influence on the composition of the Asian Monsoon Anticyclone (AMA) in the upper troposphere over the eastern Mediterranean and the Arabian Peninsula. This study focuses on in situ observations of hydrogen peroxide (H2O2) and organic hydroperoxides (ROOH), as well as their precursors and loss processes. Observations are compared to steady state calculations of H2O2, methyl hydroperoxide (MHP) and inferred unidentified hydroperoxide (UHP) mixing ratios. Measurements are also contrasted to simulations with the general circulation ECHAM/MESSy for Atmospheric Chemistry (EMAC) model. We observed enhanced mixing ratios of H2O2, MHP and UHP in the AMA relative to the northern hemispheric background. Highest concentrations for H2O2 and MHP were found in the southern hemisphere outside the AMA, while for UHP, highest concentrations were found within the AMA. In general, the observed concentrations are higher than steady-state calculations and EMAC simulations. Especially in the AMA, EMAC underestimates the H2O2 and ROOH mixing ratios. Longitudinal gradients indicate a pool of hydroperoxides towards the center of the AMA, most likely associated with upwind convection over India. This indicates main contributions of atmospheric transport to the local budgets of hydroperoxides along the flight track, explaining strong deviations to steady-state calculations which only accounts for local photochemistry. Deviations to EMAC simulations are most likely due to uncertainties in the scavenging efficiencies for individual hydroperoxides in deep convective transport to the upper troposphere, corroborated by a sensitivity study. It seems that the observed excess UHP is excess MHP transported to the west from an upper tropospheric source related to convection in the summer monsoon over South-East Asia.


2013 ◽  
Vol 9 (4) ◽  
pp. 5019-5036
Author(s):  
G.-S. Chen ◽  
Z. Liu ◽  
J. E. Kutzbach

Abstract. The Tibetan Plateau has been conventionally treated as an elevated heat source driving the Asian monsoon system, especially for the South Asian monsoon. Numerous model simulations with general circulation models (GCMs) support this hypothesis with the finding that the Asian monsoon system is weak or absent with all elevated topographies removed. A recent model simulation shows that the South Asian summer monsoon circulation is little affected with only the Himalayas (no Tibetan Plateau) kept as a barrier, leading to a hypothesis of the barrier "blocking" mechanism of the Tibetan Plateau. In this paper, a new series of experiments are designed to reexamine this barrier effect. We find that with the barrier, the large-scale summer monsoon circulation over South Asia is simulated in general agreement with the full Tibetan Plateau, which is consistent with the previous finding. However there remains significant differences in both wind field and precipitation field elsewhere, suggesting a role of the full Tibetan Plateau as well. Moreover, the proposed barrier "blocking" mechanism is not found in our experiments. The energy of the low-level air and the convection is lower/weaker over the Indian subcontinent in the full Tibetan Plateau experiment than that in the no-Tibetan Plateau experiment or the barrier only experiment, which is opposite to the barrier "blocking" hypothesis. Instead, there is a similar candle-like latent heating in the middle troposphere along the south edge of the Tibetan Plateau in both the full Tibetan Plateau and the barrier experiments, whereas this "candle heating" disappears in the no-Tibetan Plateau experiment. We propose that this candle heating is the key to understand the mechanisms of the Tibetan Plateau on the South Asian monsoon. Future studies are needed to check the source of the "candle heating" and its effect on the Asian monsoon.


2014 ◽  
Vol 10 (3) ◽  
pp. 1269-1275 ◽  
Author(s):  
G.-S. Chen ◽  
Z. Liu ◽  
J. E. Kutzbach

Abstract. The Tibetan Plateau has been conventionally treated as an elevated heat source driving the Asian monsoon system, especially for the South Asian monsoon. Numerous model simulations with general circulation models (GCMs) support this hypothesis with the finding that the Asian monsoon system is weak or absent when all elevated topography is removed. A recent model simulation shows that the South Asian summer monsoon circulation is little affected with only the Himalayas (no-Tibetan Plateau) kept as a barrier, leading to a hypothesis of the barrier "blocking" mechanism of the Tibetan Plateau. In this paper, a new series of experiments are designed to reexamine this barrier effect. We find that with the barrier, the large-scale summer monsoon circulation over South Asia is simulated in general agreement with the full Tibetan Plateau, which is consistent with the previous finding. However, there remains significant differences in both wind and precipitation fields, suggesting a role for the full Tibetan Plateau as well. Moreover, the proposed barrier blocking mechanism is not found in our experiments. The energy of the low-level air and the convection are lower and weaker over the Indian subcontinent in the full Tibetan Plateau experiment than that in the no-Tibetan Plateau experiment or the barrier only experiment, which is in contrast to the barrier blocking hypothesis. Instead, there is a similar candle-like latent heating in the middle troposphere along the southern edge of the Tibetan Plateau in both the full Tibetan Plateau and the barrier experiments, whereas this "candle heating" disappears in the no-Tibetan Plateau experiment. We propose that this candle heating is the key to understanding the mechanisms of the Tibetan Plateau on the South Asian monsoon. Future studies are needed to check the source of the "candle heating" and its effect on the Asian monsoon.


2015 ◽  
Vol 15 (5) ◽  
pp. 6967-7018 ◽  
Author(s):  
A. Rauthe-Schöch ◽  
A. K. Baker ◽  
T. J. Schuck ◽  
C. A. M. Brenninkmeijer ◽  
A. Zahn ◽  
...  

Abstract. The CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) passenger aircraft observatory performed in situ measurements at 10–12 km altitude in the South Asian summer monsoon anticyclone between June and September 2008. These measurements enable us to investigate this atmospheric region, which so far has mostly been observed from satellites, using the broad suite of trace gases and aerosols measured by CARIBIC. Elevated levels of a range of atmospheric pollutants were recorded e.g. carbon monoxide, total reactive nitrogen oxides, aerosol particles and several volatile organic compounds. The measurements provide detailed information about the chemical composition of air in different parts of the monsoon anticyclone, particularly of ozone precursors. While covering a range of 3500 km inside the monsoon anticyclone, CARIBIC observations show remarkable consistency, i.e. with regular latitudinal patterns of trace gases during the entire monsoon period. Trajectory calculations indicate that these air masses originated mainly from South Asia and Mainland Southeast Asia. Using the CARIBIC trace gas and aerosol measurements in combination with the Lagrangian particle dispersion model FLEXPART we investigated the characteristics of monsoon outflow and the chemical evolution of air masses during transport. Estimated photochemical ages of the air were found to agree well with transport times from a source region east of 95° E. The photochemical ages of the air in the southern part of the monsoon anticyclone were consistently younger (less than 7 days) and the air masses mostly in an ozone forming chemical regime. In its northern part the air masses were older (up to 13 days) and had unclear ozone formation or destruction potential. Based on analysis of forward trajectories several receptor regions were identified. In addition to predominantly westward transport, we found evidence for efficient transport (within 10 days) to the Pacific and North America, particularly during June and September, and also of cross-tropopause exchange, which was strongest during June and July. Westward transport to Africa and further to the Mediterranean was the main pathway during July.


2019 ◽  
Vol 46 (8) ◽  
pp. 4476-4484
Author(s):  
Ding Ma ◽  
Adam H. Sobel ◽  
Zhiming Kuang ◽  
Martin S. Singh ◽  
Ji Nie

2015 ◽  
Vol 28 (9) ◽  
pp. 3731-3750 ◽  
Author(s):  
Jennifer M. Walker ◽  
Simona Bordoni ◽  
Tapio Schneider

Abstract This study identifies coherent and robust large-scale atmospheric patterns of interannual variability of the South Asian summer monsoon (SASM) in observational data. A decomposition of the water vapor budget into dynamic and thermodynamic components shows that interannual variability of SASM net precipitation (P − E) is primarily caused by variations in winds rather than in moisture. Linear regression analyses reveal that strong monsoons are distinguished from weak monsoons by a northward expansion of the cross-equatorial monsoonal circulation, with increased precipitation in the ascending branch. Interestingly, and in disagreement with the view of monsoons as large-scale sea-breeze circulations, strong monsoons are associated with a decreased meridional gradient in the near-surface atmospheric temperature in the SASM region. Teleconnections exist from the SASM region to the Southern Hemisphere, whose midlatitude poleward eddy energy flux correlates with monsoon strength. Possible implications of these teleconnection patterns for understanding SASM interannual variability are discussed.


Sign in / Sign up

Export Citation Format

Share Document