scholarly journals Local and remote mean and extreme temperature response to regional aerosol emissions reductions

2020 ◽  
Vol 20 (5) ◽  
pp. 3009-3027 ◽  
Author(s):  
Daniel M. Westervelt ◽  
Nora R. Mascioli ◽  
Arlene M. Fiore ◽  
Andrew J. Conley ◽  
Jean-François Lamarque ◽  
...  

Abstract. The climatic implications of regional aerosol and precursor emissions reductions implemented to protect human health are poorly understood. We investigate the mean and extreme temperature response to regional changes in aerosol emissions using three coupled chemistry–climate models: NOAA GFDL CM3, NCAR CESM1, and NASA GISS-E2. Our approach contrasts a long present-day control simulation from each model (up to 400 years with perpetual year 2000 or 2005 emissions) with 14 individual aerosol emissions perturbation simulations (160–240 years each). We perturb emissions of sulfur dioxide (SO2) and/or carbonaceous aerosol within six world regions and assess the statistical significance of mean and extreme temperature responses relative to internal variability determined by the control simulation and across the models. In all models, the global mean surface temperature response (perturbation minus control) to SO2 and/or carbonaceous aerosol is mostly positive (warming) and statistically significant and ranges from +0.17 K (Europe SO2) to −0.06 K (US BC). The warming response to SO2 reductions is strongest in the US and Europe perturbation simulations, both globally and regionally, with Arctic warming up to 1 K due to a removal of European anthropogenic SO2 emissions alone; however, even emissions from regions remote to the Arctic, such as SO2 from India, significantly warm the Arctic by up to 0.5 K. Arctic warming is the most robust response across each model and several aerosol emissions perturbations. The temperature response in the Northern Hemisphere midlatitudes is most sensitive to emissions perturbations within that region. In the tropics, however, the temperature response to emissions perturbations is roughly the same in magnitude as emissions perturbations either within or outside of the tropics. We find that climate sensitivity to regional aerosol perturbations ranges from 0.5 to 1.0 K (W m−2)−1 depending on the region and aerosol composition and is larger than the climate sensitivity to a doubling of CO2 in two of three models. We update previous estimates of regional temperature potential (RTP), a metric for estimating the regional temperature responses to a regional emissions perturbation that can facilitate assessment of climate impacts with integrated assessment models without requiring computationally demanding coupled climate model simulations. These calculations indicate a robust regional response to aerosol forcing within the Northern Hemisphere midlatitudes, regardless of where the aerosol forcing is located longitudinally. We show that regional aerosol perturbations can significantly increase extreme temperatures on the regional scale. Except in the Arctic in the summer, extreme temperature responses largely mirror mean temperature responses to regional aerosol perturbations through a shift of the temperature distributions and are mostly dominated by local rather than remote aerosol forcing.

2019 ◽  
Author(s):  
Daniel M. Westervelt ◽  
Nora R. Mascioli ◽  
Arlene M. Fiore ◽  
Andrew J. Conley ◽  
Jean-François Lamarque ◽  
...  

Abstract. The climatic implications of regional aerosol and precursor emissions reductions implemented to protect human health are poorly understood. We investigate the mean and extreme temperature response to regional changes in aerosol emissions using three coupled chemistry-climate models: NOAA GFDL-CM3, NCAR-CESM1, and NASA GISS-E2. Our approach contrasts a long present-day control simulation from each model (up to 400 years with perpetual year 2000 or 2005 emissions) with fourteen individual aerosol emissions perturbation simulations (160–240 years each). We perturb emissions of sulfur dioxide (SO2) and/or carbonaceous aerosol within six world regions and assess the statistical significance of mean and extreme temperature responses relative to internal variability determined by the control simulation and across the models. In all models, the global mean surface temperature response (perturbation minus control) to SO2 and/or carbonaceous aerosol is mostly positive (warming), statistically significant, and ranges from +0.17 K (Europe SO2) to −0.06 K (US BC). The warming response to SO2 reductions is strongest in the US and Europe perturbation simulations, both globally and regionally, with Arctic warming up to 1 K due to a removal of European anthropogenic SO2 emissions alone; however, even emissions from regions remote to the Arctic, such as SO2 from India, significantly warm the Arctic by up to 0.5 K. Arctic warming is the most robust response across each model and several aerosol emissions perturbations. The temperature response in the northern hemisphere mid-latitudes is most sensitive to emissions perturbations within that region. In the tropics, however, the temperature response to emissions perturbations is roughly the same in magnitude from emissions perturbations either within or outside of the tropics. We find that climate sensitivity to regional aerosol perturbations ranges from 0.5 to 1.0 K per W m−2 depending on the region and aerosol composition, and is larger than the climate sensitivity to a doubling of CO2 in two of three models. We update previous estimates of Regional Temperature Potential (RTP), a metric for estimating the regional temperature responses to a regional emissions perturbation that can facilitate assessment of climate impacts with integrated assessment models without requiring computationally demanding coupled climate model simulations. These calculations indicate a robust regional response to aerosol forcing within the northern hemisphere mid-latitudes, regardless of where the aerosol forcing is located longitudinally. We show that regional aerosol perturbations can significantly increase extreme temperatures on the regional scale. Except in the Arctic in the summer, extreme temperature responses largely mirror mean temperature responses to regional aerosol perturbations through a shift of the temperature distributions and are mostly dominated by local rather than remote aerosol forcing.


Author(s):  
Daniel M. Westervelt ◽  
Nora R. Mascioli ◽  
Arlene M. Fiore ◽  
Andrew J. Conley ◽  
Jean-François Lamarque ◽  
...  

2016 ◽  
Vol 73 (8) ◽  
pp. 3287-3303 ◽  
Author(s):  
Sergio A. Sejas ◽  
Ming Cai

Abstract Climate feedback processes are known to substantially amplify the surface warming response to an increase of greenhouse gases. When the forcing and feedbacks modify the temperature response they trigger temperature feedback loops that amplify the direct temperature changes due to the forcing and nontemperature feedbacks through the thermal–radiative coupling between the atmosphere and surface. This study introduces a new feedback-response analysis method that can isolate and quantify the effects of the temperature feedback loops of individual processes on surface temperature from their corresponding direct surface temperature responses. The authors analyze a 1% yr−1 increase of CO2 simulation of the NCAR CCSM4 at the time of CO2 doubling to illustrate the new method. The Planck sensitivity parameter, which indicates colder regions experience stronger surface temperature responses given the same change in surface energy flux, is the inherent factor that leads to polar warming amplification (PWA). This effect explains the PWA in the Antarctic, while the direct temperature response to the albedo and cloud feedbacks further explains the greater PWA of the Arctic. Temperature feedback loops, particularly the one associated with the albedo feedback, further amplify the Arctic surface warming relative to the tropics. In the tropics, temperature feedback loops associated with the CO2 forcing and water vapor feedback cause most of the surface warming. Overall, the temperature feedback is responsible for most of the surface warming globally, accounting for nearly 76% of the global-mean surface warming. This is 3 times larger than the next largest warming contribution, indicating that the temperature feedback loop is the preeminent contributor to the surface warming.


2020 ◽  
Author(s):  
Joonas Merikanto ◽  
Kalle Nordling ◽  
Petri Räisänen ◽  
Jouni Räisänen ◽  
Declan O'Donnell ◽  
...  

Abstract. South and East Asian anthropogenic aerosols mostly reside in an air mass extending from the Indian Ocean to the North Pacific. Yet the surface temperature effects of Asian aerosols spread across the whole globe. Here, we remove Asian anthropogenic aerosols from two independent climate models (ECHAM6.1 and NorESM1) using the same representation of aerosols via MACv2-SP (a simple plume implementation of the 2nd version of the Max Planck Institute Aerosol Climatology). We then robustly decompose the global distribution of surface temperature responses into contributions from atmospheric energy flux changes. We find that the horizontal atmospheric energy transport strongly moderates the surface temperature response over the regions where Asian aerosols reside. Atmospheric energy transport and changes in clear-sky longwave radiation redistribute the temperature effects efficiently across the Northern hemisphere, and to a lesser extent also over the Southern hemisphere. The model-mean global surface temperature response to Asian anthropogenic aerosol removal is 0.26 ± 0.04 °C (0.22 ± 0.03 for ECHAM6.1 and 0.30 ± 0.03 °C for NorESM1) of warming. Model-to-model differences in global surface temperature response mainly arise from differences in longwave cloud (0.01 ± 0.01 for ECHAM6.1 and 0.05 ± 0.01 °C for NorESM1) and shortwave cloud (0.03 ± 0.03 for ECHAM6.1 and 0.07 ± 0.02 °C for NorESM1) responses. The differences in cloud responses between the models also dominate the differences in regional temperature responses. In both models, the Northern hemispheric surface warming amplifies towards the Arctic, where the total temperature response is highly seasonal and weakest during the Arctic summer. We estimate that under a strong Asian aerosol mitigation policy tied with strong climate mitigation (Shared Socioeconomic Pathway 1-1.9) the Asian aerosol reductions can add around 8 years' worth of current day global warming during the next few decades.


2018 ◽  
Author(s):  
Daniel M. Westervelt ◽  
Andrew J. Conley ◽  
Arlene M. Fiore ◽  
Jean-François Lamarque ◽  
Drew T. Shindell ◽  
...  

Abstract. The unintended climatic implications of aerosol and precursor emission reductions implemented to protect public health are poorly understood. We investigate the precipitation response to regional changes in aerosol emissions using three coupled chemistry-climate models: NOAA Geophysical Fluid Dynamics Laboratory Coupled Model 3 (GFDL-CM3), NCAR Community Earth System Model (CESM1), and NASA Goddard Institute for Space Studies ModelE2 (GISS-E2). Our approach contrasts a long present-day control simulation from each model (up to 400 years with perpetual year 2000 or 2005 emissions) with fourteen individual aerosol emissions perturbation simulations (160–240 years each). We perturb emissions of sulfur dioxide and/or carbonaceous aerosol within six world regions and assess the significance of precipitation responses relative to internal variability determined by the control simulation and across the models. Global and regional precipitation mostly increases when we reduce regional aerosol emissions in the models, with the strongest responses occurring for sulfur dioxide emissions reductions from Europe and the United States. Precipitation responses to aerosol emissions reductions are largest in the tropics and project onto the El Niño-Southern Oscillation (ENSO). Regressing precipitation onto an Indo-Pacific zonal sea level pressure gradient index (a proxy for ENSO) indicates that the ENSO component of the precipitation response to regional aerosol removal can be as large as 20 % of the total simulated response. Precipitation increases in the Sahel in response to aerosol reductions in remote regions because an anomalous interhemispheric temperature gradient alters the position of the Intertropical Convergence Zone (ITCZ). This mechanism holds across multiple aerosol reduction simulations and models.


2019 ◽  
Vol 19 (24) ◽  
pp. 15235-15245 ◽  
Author(s):  
Borgar Aamaas ◽  
Terje Koren Berntsen ◽  
Bjørn Hallvard Samset

Abstract. Anthropogenic emissions of short-lived climate forcers (SLCFs) affect both air quality and climate. How much regional temperatures are affected by ambitious SLCF emission mitigation policies is, however, still uncertain. We investigate the potential temperature implications of stringent air quality policies by applying matrices of regional temperature responses to new pathways for future anthropogenic emissions of aerosols, methane (CH4), and other short-lived gases. These measures have only a minor impact on CO2 emissions. Two main options are explored, one with climate optimal reductions (i.e., constructed to yield a maximum global cooling) and one with the maximum technically feasible reductions. The temperature response is calculated for four latitude response bands (90–28∘ S, 28∘ S–28∘ N, 28–60∘ N, and 60–90∘ N) by using existing absolute regional temperature change potential (ARTP) values for four emission regions: Europe, East Asia, shipping, and the rest of the world. By 2050, we find that global surface temperature can be reduced by -0.3±0.08 ∘C with climate-optimal mitigation of SLCFs relative to a baseline scenario and as much as −0.7 ∘C in the Arctic. Cutting CH4 and black carbon (BC) emissions contributes the most. The net global cooling could offset warming equal to approximately 15 years of current global CO2 emissions. On the other hand, mitigation of other SLCFs (e.g., SO2) leads to warming. If SLCFs are mitigated heavily, we find a net warming of about 0.1 ∘C, but when uncertainties are included a slight cooling is also possible. In the climate optimal scenario, the largest contributions to cooling come from the energy, domestic, waste, and transportation sectors. In the maximum technically feasible mitigation scenario, emission changes from the industry, energy, and shipping sectors will cause warming. Some measures, such as those in the agriculture waste burning, domestic, transport, and industry sectors, have large impacts on the Arctic, especially by cutting BC emissions in winter in areas near the Arctic.


2019 ◽  
Vol 19 (15) ◽  
pp. 9969-9987 ◽  
Author(s):  
Kalle Nordling ◽  
Hannele Korhonen ◽  
Petri Räisänen ◽  
Muzaffer Ege Alper ◽  
Petteri Uotila ◽  
...  

Abstract. Significant discrepancies remain in estimates of climate impacts of anthropogenic aerosols between different general circulation models (GCMs). Here, we demonstrate that eliminating differences in model aerosol or radiative forcing fields results in close agreement in simulated globally averaged temperature and precipitation responses in the studied GCMs. However, it does not erase the differences in regional responses. We carry out experiments of equilibrium climate response to modern-day anthropogenic aerosols using an identical representation of anthropogenic aerosol optical properties and the first indirect effect of aerosols, MACv2-SP (a simple plume implementation of the second version of the Max Planck Institute Aerosol CLimatology), in two independent climate models (NorESM, Norwegian Earth System Model, and ECHAM6). We find consistent global average temperature responses of −0.48 (±0.02) and −0.50 (±0.03) K and precipitation responses of −1.69 (±0.04) % and −1.79 (±0.05) % in NorESM1 and ECHAM6, respectively, compared to modern-day equilibrium climate without anthropogenic aerosols. However, significant differences remain between the two GCMs' regional temperature responses around the Arctic circle and the Equator and precipitation responses in the tropics. The scatter in the simulated globally averaged responses is small in magnitude when compared against literature data from modern GCMs using model intrinsic aerosols but same aerosol emissions −(0.5–1.1) K and −(1.5–3.1) % for temperature and precipitation, respectively). The Pearson correlation of regional temperature (precipitation) response in these literature model experiments with intrinsic aerosols is 0.79 (0.34). The corresponding correlation coefficient for NorESM1 and ECHAM6 runs with identical aerosols is 0.78 (0.41). The lack of improvement in correlation coefficients between models with identical aerosols and models with intrinsic aerosols implies that the spatial distribution of regional climate responses is not improved via homogenizing the aerosol descriptions in the models. Rather, differences in the atmospheric dynamic and snow/sea ice cover responses dominate the differences in regional climate responses. Hence, even if we would have perfect aerosol descriptions inside the global climate models, uncertainty arising from the differences in circulation responses between the models would likely still result in a significant uncertainty in regional climate responses.


2021 ◽  
Vol 21 (8) ◽  
pp. 5865-5881
Author(s):  
Joonas Merikanto ◽  
Kalle Nordling ◽  
Petri Räisänen ◽  
Jouni Räisänen ◽  
Declan O'Donnell ◽  
...  

Abstract. South and East Asian anthropogenic aerosols mostly reside in an air mass extending from the Indian Ocean to the North Pacific. Yet the surface temperature effects of Asian aerosols spread across the whole globe. Here, we remove Asian anthropogenic aerosols from two independent climate models (ECHAM6.1 and NorESM1) using the same representation of aerosols via MACv2-SP (a simple plume implementation of the second version of the Max Planck Institute Aerosol Climatology). We then robustly decompose the global distribution of surface temperature responses into contributions from atmospheric energy flux changes. We find that the horizontal atmospheric energy transport strongly moderates the surface temperature response over the regions where Asian aerosols reside. Atmospheric energy transport and changes in clear-sky longwave radiation redistribute the temperature effects efficiently across the Northern Hemisphere and to a lesser extent also over the Southern Hemisphere. The model-mean global surface temperature response to Asian anthropogenic aerosol removal is 0.26±0.04 ∘C (0.22±0.03 for ECHAM6.1 and 0.30±0.03 ∘C for NorESM1) of warming. Model-to-model differences in global surface temperature response mainly arise from differences in longwave cloud (0.01±0.01 for ECHAM6.1 and 0.05±0.01 ∘C for NorESM1) and shortwave cloud (0.03±0.03 for ECHAM6.1 and 0.07±0.02 ∘C for NorESM1) responses. The differences in cloud responses between the models also dominate the differences in regional temperature responses. In both models, the northern-hemispheric surface warming amplifies towards the Arctic, where the total temperature response is highly seasonal and weakest during the Arctic summer. We estimate that under a strong Asian aerosol mitigation policy tied with strong climate mitigation (Shared Socioeconomic Pathway 1-1.9) the Asian aerosol reductions can add around 8 years' worth of current-day global warming during the next few decades.


2019 ◽  
Author(s):  
Borgar Aamaas ◽  
Terje K. Berntsen ◽  
Bjørn H. Samset

Abstract. Anthropogenic emissions of short-lived climate forcers (SLCFs) affect both air quality and climate. How much regional temperatures are affected by ambitious SLCF emission mitigation policies, is however still uncertain. We investigate the potential temperature implications of stringent air quality policies, by applying matrices of regional temperature responses to new pathways for future anthropogenic emissions of aerosols, methane (CH4) and other short-lived gases. These measures have only minor impact on CO2 emissions. Two main options are explored, one with climate optimal reductions (i.e. constructed to yield a maximum global cooling) and one with maximum technically feasible reductions. The temperature response is calculated for four latitude response bands (90–28° S, 28° S–28° N, 28–60° N, and 60–90° N) by using existing regional temperature change potential (ARTP) values for four emission regions: Europe, East Asia, shipping, and the rest of the world. By 2050, we find that global surface temperature can be reduced by −0.3 ± 0.08 °C with climate-optimal mitigation of SLCFs relative to a baseline scenario, and as much as −0.7 °C in the Arctic. Cutting CH4 and BC emissions contribute the most. This could offset warming equal to approximately 15 years of current global CO2 emissions. If SLCFs are mitigated heavily, we find a net warming of about 0.1 °C, but when uncertainties are included a slight cooling is also possible. In the climate optimal scenario, the largest contributions to cooling comes from the energy, domestic, waste, and transportation sectors. In the maximum technically feasible mitigation scenario, emission changes from the sectors industry, energy, and shipping will give warming. Some measures, such as in the sectors agriculture waste burning, domestic, transport, and industry, have outsized impact on the Arctic, especially by cutting BC emissions in winter in areas near the Arctic.


Sign in / Sign up

Export Citation Format

Share Document