scholarly journals Simulation of mixed-phase clouds with the ICON large-eddy model in the complex Arctic environment around Ny-Ålesund

2020 ◽  
Vol 20 (1) ◽  
pp. 475-485 ◽  
Author(s):  
Vera Schemann ◽  
Kerstin Ebell

Abstract. Low-level mixed-phase clouds have a substantial impact on the redistribution of radiative energy in the Arctic and are a potential driving factor in Arctic amplification. To better understand the complex processes around mixed-phase clouds, a combination of long-term measurements and high-resolution modeling able to resolve the relevant processes is essential. In this study, we show the general feasibility of the new high-resolution icosahedral nonhydrostatic large-eddy model (ICON-LEM) to capture the general structure, type and timing of mixed-phase clouds at the Arctic site Ny-Ålesund and its potential and limitations for further detailed research. To serve as a basic evaluation, the model is confronted with data streams of single instruments including a microwave radiometer and cloud radar and also with value-added products like the CloudNet classification. The analysis is based on a 11 d long time period with selected periods studied in more detail focusing on the representation of particular cloud processes, such as mixed-phase microphysics. In addition, targeted statistical evaluations against observational data sets are performed to assess (i) how well the vertical structure of the clouds is represented and (ii) how much information is added by higher horizontal resolutions. The results clearly demonstrate the advantage of high resolutions. In particular, with the highest horizontal model resolution of 75 m, the variability of the liquid water path can be well captured. By comparing neighboring grid cells for different subdomains, we also show the potential of the model to provide information on the representativity of single sites (such as Ny-Ålesund) for a larger domain.

2019 ◽  
Author(s):  
Vera Schemann ◽  
Kerstin Ebell

Abstract. Low-level mixed phase clouds have a substantial impact on the redistribution of radiative energy in the Arctic and are a potential driving factor for Arctic Amplification. To better understand the complex processes around mixed-phase clouds, a combination of long-term measurements and high-resolution modeling - which is able to resolve the relevant processes - is essential. In this study, we show the general feasibility of the new high-resolution model ICON-LEM to capture the general structure, type and timing of mixed-phase clouds at the Arctic site Ny-Ålesund and its potential and limitations for further detailed research. As a basic evaluation the model is confronted with data streams of single instruments including microwave radiometer and cloud radar, but also with value added products like the Cloudnet classification. The analysis is based on a 11-day long time period with selected periods being studied in more detail focusing on the representation of particular cloud processes, such as mixed-phase microphysics. In addition, targeted statistical evaluations against observational data sets are performed to assess i) how well the vertical structure of the clouds is represented and ii) how much information is added by higher resolutions. The results clearly demonstrate the advantage of high resolutions: in particular, with the highest model resolution of 75 m, the variability of liquid water path can be well captured. By comparing neighboring grid cells for different subdomains we also show the potential of the model to provide information on the representativity of single sites (as Ny-Ålesund) for a larger domain.


2019 ◽  
Vol 19 (6) ◽  
pp. 4105-4126 ◽  
Author(s):  
Tatiana Nomokonova ◽  
Kerstin Ebell ◽  
Ulrich Löhnert ◽  
Marion Maturilli ◽  
Christoph Ritter ◽  
...  

Abstract. The French–German Arctic research base AWIPEV (the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research – AWI – and the French Polar Institute Paul Emile Victor – PEV) at Ny-Ålesund, Svalbard, is a unique station for monitoring cloud-related processes in the Arctic. For the first time, data from a set of ground-based instruments at the AWIPEV observatory are analyzed to characterize the vertical structure of clouds. For this study, a 14-month dataset from Cloudnet combining observations from a ceilometer, a 94 GHz cloud radar, and a microwave radiometer is used. A total cloud occurrence of ∼81 %, with 44.8 % multilayer and 36 % single-layer clouds, was found. Among single-layer clouds the occurrence of liquid, ice, and mixed-phase clouds was 6.4 %, 9 %, and 20.6 %, respectively. It was found that more than 90 % of single-layer liquid and mixed-phase clouds have liquid water path (LWP) values lower than 100 and 200 g m−2, respectively. Mean values of ice water path (IWP) for ice and mixed-phase clouds were found to be 273 and 164 g m−2, respectively. The different types of single-layer clouds are also related to in-cloud temperature and the relative humidity under which they occur. Statistics based on observations are compared to ICOsahedral Non-hydrostatic (ICON) model output. Distinct differences in liquid-phase occurrence in observations and the model at different environmental temperatures lead to higher occurrence of pure ice clouds. A lower occurrence of mixed-phase clouds in the model at temperatures between −20 and −5 ∘C becomes evident. The analyzed dataset is useful for satellite validation and model evaluation.


2020 ◽  
Author(s):  
Jan Chylik ◽  
Stephan Mertes ◽  
Roel Neggers

<p>Arctic mixed-phase clouds are still not properly represented in weather forecast and climate models. Recent field campaigns in the Arctic have successfully probed low level mixed-phase clouds, however it remains difficult to gain understanding of this complex system from observational datasets alone. Complementary high-resolution simulations, properly constrained by relevant measurements, can serve as a virtual laboratory that provides a deeper insight into a developing boundary layer in the Arctic.</p><p><br>Our study focus on the impact of variability in cloud condensation nuclei (CCN) concentrations on the turbulence in Arctic mixed-phase clouds. Large-Eddy Simulations of convective mixed-phase clouds over open water were performed as observed during the ACLOUD campaign, which took place in Fram Strait west of Svalbard in May and June 2017. The Dutch Atmospheric Large Eddy Simulation (DALES) is used including a well-established double-moment mixed-phase microphysics scheme of Seifert & Beheng.</p><p><br>The results highlight various impact mechanisms of CCN on the boundary layer thermodynamic state, turbulence, and clouds. Lower CCN concentrations generally lead to decreased turbulence near the cloud top. However, they can also enhance the turbulence in the lower part of the boundary layer due to increased amount of sublimation of ice hydrometeors. Further implications for the role of mixed-phase clouds in the Arctic Amplification will be discussed.</p>


2021 ◽  
Vol 118 (13) ◽  
pp. e2021387118
Author(s):  
Edward P. Luke ◽  
Fan Yang ◽  
Pavlos Kollias ◽  
Andrew M. Vogelmann ◽  
Maximilian Maahn

Secondary ice production (SIP) can significantly enhance ice particle number concentrations in mixed-phase clouds, resulting in a substantial impact on ice mass flux and evolution of cold cloud systems. SIP is especially important at temperatures warmer than −10 ○C, for which primary ice nucleation lacks a significant number of efficient ice nucleating particles. However, determining the climatological significance of SIP has proved difficult using existing observational methods. Here we quantify the long-term occurrence of secondary ice events and their multiplication factors in slightly supercooled clouds using a multisensor, remote-sensing technique applied to 6 y of ground-based radar measurements in the Arctic. Further, we assess the potential contribution of the underlying mechanisms of rime splintering and freezing fragmentation. Our results show that the occurrence frequency of secondary ice events averages to <10% over the entire period. Although infrequent, the events can have a significant impact in a local region when they do occur, with up to a 1,000-fold enhancement in ice number concentration. We show that freezing fragmentation, which appears to be enhanced by updrafts, is more efficient for SIP than the better-known rime-splintering process. Our field observations are consistent with laboratory findings while shedding light on the phenomenon and its contributing factors in a natural environment. This study provides critical insights needed to advance parameterization of SIP in numerical simulations and to design future laboratory experiments.


2017 ◽  
Vol 17 (6) ◽  
pp. 4209-4227 ◽  
Author(s):  
Gillian Young ◽  
Paul J. Connolly ◽  
Hazel M. Jones ◽  
Thomas W. Choularton

Abstract. This study uses large eddy simulations to test the sensitivity of single-layer mixed-phase stratocumulus to primary ice number concentrations in the European Arctic. Observations from the Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign are considered for comparison with cloud microphysics modelled using the Large Eddy Model (LEM, UK Met. Office). We find that cloud structure is very sensitive to ice number concentrations, Nice, and small increases can cause persisting mixed-phase clouds to glaciate and break up.Three key dependencies on Nice are identified from sensitivity simulations and comparisons with observations made over the sea ice pack, marginal ice zone (MIZ), and ocean. Over sea ice, we find deposition–condensation ice formation rates are overestimated, leading to cloud glaciation. When ice formation is limited to water-saturated conditions, we find microphysics comparable to aircraft observations over all surfaces considered. We show that warm supercooled (−13 °C) mixed-phase clouds over the MIZ are simulated to reasonable accuracy when using both the DeMott et al.(2010) and Cooper(1986) primary ice nucleation parameterisations. Over the ocean, we find a strong sensitivity of Arctic stratus to Nice. The Cooper(1986) parameterisation performs poorly at the lower ambient temperatures, leading to a comparatively higher Nice (2.43 L−1 at the cloud-top temperature, approximately −20 °C) and cloud glaciation. A small decrease in the predicted Nice (2.07 L−1 at −20 °C), using the DeMott et al.(2010) parameterisation, causes mixed-phase conditions to persist for 24 h over the ocean. However, this representation leads to the formation of convective structures which reduce the cloud liquid water through snow precipitation, promoting cloud break-up through a depleted liquid phase. Decreasing the Nice further (0.54 L−1, using a relationship derived from ACCACIA observations) allows mixed-phase conditions to be maintained for at least 24 h with more stability in the liquid and ice water paths. Sensitivity to Nice is also evident at low number concentrations, where 0.1  ×  Nice predicted by the DeMott et al.(2010) parameterisation results in the formation of rainbands within the model; rainbands which also act to deplete the liquid water in the cloud and promote break-up.


2016 ◽  
Author(s):  
Gillian Young ◽  
Paul J. Connolly ◽  
Hazel M. Jones ◽  
Thomas W. Choularton

Abstract. This study uses large eddy simulations to test the sensitivity of single-layer mixed-phase stratocumulus to primary ice number concentrations in the European Arctic. Observations from the Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign are considered for comparison with cloud microphysics modelled using the Large Eddy Model (LEM, UK Met. Office). We find that cloud structure is very sensitive to ice number concentrations, N_ice , and small increases can cause persisting mixed-phase clouds to glaciate and break up. Three key sensitivities are identified with comparison to in situ cloud observations over the sea ice pack, marginal ice zone (MIZ), and ocean. Over sea ice, we find deposition-condensation ice formation rates are overestimated, leading to cloud glaciation. When ice formation is limited to water-saturated conditions, we find microphysics comparable to the aircraft observations over all surfaces considered. We show that warm supercooled (−13 °C) mixed-phase clouds over the MIZ are simulated to reasonable accuracy when using both the DeMott et al. (2010) and Cooper (1986) parameterisations. Over the ocean, we find a strong sensitivity of Arctic stratus to ice number concentrations. Cooper (1986) performs poorly at the lower ambient temperatures, leading to comparatively higher ice number concentrations (2.43 L−1 at the cloud top temperature, approximately −20 °C) and cloud glaciation. A small decrease in the predicted Nice (2.07 L−1 at −20 °C), using the DeMott et al. (2010) parameterisation, causes mixed-phase conditions to persist for 24 h over the ocean. However, this representation leads to the formation of convective structures which reduce the cloud liquid water through snow precipitation, promoting cloud break up. Decreasing the ice crystal number concentration further (0.54 L−1, using a relationship derived from ACCACIA observations) allows mixed-phase conditions to be maintained for at least 24 h with more stability in the liquid and ice water paths. Sensitivity to Nice is also evident at low number concentrations, where 0.1×Nice predicted by the DeMott et al. (2010) parameterisation results in the formation of rainbands within the model; rainbands which also act to deplete the liquid water in the cloud and promote break up.


2022 ◽  
pp. 1-48
Author(s):  
Yi Ming

Abstract A negative shortwave cloud feedback associated with higher extratropical liquid water content in mixed-phase clouds is a common feature of global warming simulations, and multiple mechanisms have been hypothesized. A set of process-level experiments performed with an idealized global climate model (a dynamical core with passive water and cloud tracers and full Rotstayn-Klein single-moment microphysics) show that the common picture of the liquid water path (LWP) feedback in mixed-phase clouds being controlled by the amount of ice susceptible to phase change is not robust. Dynamic condensate processes—rather than static phase partitioning—directly change with warming, with varied impacts on liquid and ice amounts. Here, three principal mechanisms are responsible for the LWP response, namely higher adiabatic cloud water content, weaker liquid-to-ice conversion through the Bergeron-Findeisen process, and faster melting of ice and snow to rain. Only melting is accompanied by a substantial loss of ice, while the adiabatic cloud water content increase gives rise to a net increase in ice water path (IWP) such that total cloud water also increases without an accompanying decrease in precipitation efficiency. Perturbed parameter experiments with a wide range of climatological LWP and IWP demonstrate a strong dependence of the LWP feedback on the climatological LWP and independence from the climatological IWP and supercooled liquid fraction. This idealized setup allows for a clean isolation of mechanisms and paints a more nuanced picture of the extratropical mixed-phase cloud water feedback than simple phase change.


2013 ◽  
Vol 13 (11) ◽  
pp. 31079-31125 ◽  
Author(s):  
J. Sedlar ◽  
M. D. Shupe

Abstract. Over the Arctic Ocean, little is known, observationally, on cloud-generated buoyant overturning vertical motions within mixed-phase stratocumulus clouds. Characteristics of such motions are important for understanding the diabatic processes associated with the vertical motions, the lifetime of the cloud layer and its micro- and macrophysical characteristics. In this study, we exploit a suite of surface-based remote sensors over the high Arctic sea ice during a week-long period of persistent stratocumulus in August 2008 to derive the in-cloud vertical motion characteristics. In-cloud vertical velocity skewness and variance profiles are found to be strikingly different from observations within lower-latiatude stratocumulus, suggesting these Arctic mixed-phase clouds interact differently with the atmospheric thermodynamics (cloud tops extending above a stable temperature inversion base) and with a different coupling state between surface and cloud. We find evidence of cloud-generated vertical mixing below cloud base, regardless of surface-cloud coupling state, although a decoupled surface-cloud state occurred most frequently. Detailed case studies are examined focusing on 3 levels within the cloud layer, where wavelet and power spectral analyses are applied to characterize the dominant temporal and horizontal scales associated with cloud-generated vertical motions. In general, we find a positively-correlated vertical motion signal across the full cloud layer depth. The coherency is dependent upon other non-cloud controlled factors, such as larger, mesoscale weather passages and radiative shielding of low-level stratocumulus by multiple cloud layers above. Despite the coherency in vertical velocity across the cloud, the velocity variances were always weaker near cloud top, relative to cloud mid and base. Taken in combination with the skewness, variance and thermodynamic profile characteristics, we observe vertical motions near cloud-top that behave differently than those from lower within the cloud layer. Spectral analysis indicates peak cloud-generated w variance timescales slowed only modestly during decoupled cases relative to coupled; horizontal wavelengths only slightly increased when transitioning from coupling to decoupling. The similarities in scales suggests that perhaps the dominant forcing for all cases is generated from the cloud layer, and it is not the surface forcing that characterizes the time and space scales of in-cloud vertical velocity variance. This points toward the resilient nature of Arctic mixed-phase clouds to persist when characterized by thermodynamic regimes unique to the Arctic.


2013 ◽  
Vol 13 (8) ◽  
pp. 4339-4348 ◽  
Author(s):  
Y. Yun ◽  
J. E. Penner ◽  
O. Popovicheva

Abstract. Fossil fuel black carbon and organic matter (ffBC/OM) are often emitted together with sulfate, which coats the surface of these particles and changes their hygroscopicity. Observational studies at cirrus temperatures (≈−40 °C) show that the hygroscopicity of soot particles can modulate their ice nucleation ability. Here, we implement a scheme for 3 categories of soot (hydrophobic, hydrophilic and hygroscopic) on the basis of laboratory data and specify their ability to act as ice nuclei at mixed-phase temperatures by extrapolating the observations using a published deposition/condensation/immersion freezing parameterization. The new scheme results in significant changes to anthropogenic forcing in mixed-phase clouds. The net forcing in our offline model studies varies from 0.111 to 1.059 W m−2 depending on the ice nucleation capability of hygroscopic soot particles. The total anthropogenic cloud forcing and whole-sky forcing with the new scheme are 0.06 W m−2 and −2.45 W m−2, respectively, but could be more positive (by about 1.17 W m−2) if hygroscopic soot particles are allowed to nucleate ice particles. The change in liquid water path dominates the anthropogenic forcing in mixed-phase clouds.


2016 ◽  
Author(s):  
Ling Qi ◽  
Qinbin Li ◽  
Cenlin He ◽  
Xin Wang ◽  
Jianping Huang

Abstract. We systematically investigate the effects of Wegener-Bergeron-Findeisen (WBF) on BC scavenging efficiency, surface BCair, deposition flux, concentration in snow (BCsnow, ng g−1), and washout ratio using a global 3D chemical transport model (GEOS-Chem). We differentiate riming- versus WBF-dominated in-cloud scavenging based on liquid water content (LWC) and temperature. Specifically, we relate WBF to either temperature or ice mass fraction (IMF) in mixed-phase clouds. We find that at Jungfraujoch, Switzerland and Abisko, Sweden, where WBF dominates, the discrepancies of simulated BC scavenging efficiency and washout ratio are significantly reduced (from a factor of 3 to 10 % and from a factor of 4–5 to a factor of two). However, at Zeppelin, Norway, where riming dominates, simulation of BC scavenging efficiency, BCair, and washout ratio become worse (relative to observations) when WBF is included. There is thus an urgent need for extensive observations to distinguish and characterize riming- versus WBF-dominated aerosol scavenging in mixed-phase clouds and the associated BC scavenging efficiency. We find the reduction resulting from WBF to global BC scavenging efficiency varies substantially, from 8 % in the tropics to 76 % in the Arctic. The resulting annual mean BCair increases by up to 156 % at high altitudes and at northern high latitudes because of lower temperature and higher IMF. Overall, WBF halves the model-observation discrepancy (from −65 % to −30 %) of BCair across North America, Europe, China and the Arctic. Globally WBF increases BC burden from 0.22 to 0.29–0.35 mg m−2 yr−1, which partially explains the gap between observed and previous model simulated BC burdens over land. In addition, WBF significantly increases BC lifetime from 5.7 days to ~8 days. Additionally, WBF results in a significant redistribution of BC deposition in source and remote regions. Specifically, it lowers BC wet deposition (by 37–63 % at northern mid-latitudes and by 21–29 % in the Arctic) while increases dry deposition (by 3–16 % at mid-latitudes and by 81–159 % in the Arctic). The resulting total BC deposition is lower at mid-latitudes (by 12–34 %) but higher in the Arctic (by 2–29 %). We find that WBF decreases BCsnow at mid-latitudes (by ~15 %) but increases it in the Arctic (by 26 %) while improving model comparisons with observations. In addition, WBF dramatically reduces the model-observation discrepancy of washout ratios in winter (from a factor of 16 to 4). The remaining discrepancies in BCair, BCsnow and BC washout ratios suggest that in-cloud removal in mixed-phased clouds is likely still excessive over land.


Sign in / Sign up

Export Citation Format

Share Document