scholarly journals Continental pollution in the Western Mediterranean basin: large variability of the aerosol single scattering albedo and influence on the direct shortwave radiative effect

2016 ◽  
Author(s):  
C. Di Biagio ◽  
P. Formenti ◽  
L. Doppler ◽  
C. Gaimoz ◽  
N. Grand ◽  
...  

Abstract. Pollution aerosols strongly influence the composition of the Western Mediterranean basin, but at present little is known on their optical properties. We report in this study in situ observations of the single scattering albedo (ω) of pollution aerosol plumes measured over the Western Mediterranean basin during the TRAQA (TRansport and Air QuAlity) airborne campaign in summer 2012. Cases of pollution export from different source regions around the basin and at different altitudes between ~160 and 3500 m above sea level have been sampled during the flights. Data from this study show a large variability of ω, with values between 0.84–0.98 at 370 nm and 0.70–0.99 at 950 nm. The single scattering albedo generally decreases with the wavelength, with some exception associated to the mixing of pollution with sea spray over the sea surface. Lowest values of ω (0.84–0.70 between 370 and 950 nm) are measured in correspondence of a fresh plume possibly linked to ship emissions over the basin. The range of variability of ω observed in this study seems to be independent of the source region around the basin, as well as of the altitude and ageing time of the plumes. The observed variability of ω reflects in a large variability for the complex refractive index of pollution aerosols, which is estimated to span in the large range 1.41–1.75 and 0.002–0.068 for the real and the imaginary parts, respectively, between 370 and 950 nm. Radiative calculations in clear-sky conditions have been performed with the GAME radiative transfer model to test the sensitivity of the aerosol shortwave Direct Radiative Effect (DRE) to the variability of ω as observed in this study. Results from the calculations suggest up to a 50 % and 30 % change of the forcing efficiency (FE), i.e. the DRE per unit of optical depth, at the surface (−160÷−235 Wm−2 τ−1 at 60° solar zenith angle) and at the Top-Of-Atmosphere (−137÷−92 5 Wm−2 τ−1) for ω varying between its maximum and minimum value. This induces a change of up to an order of magnitude (+23÷+143 Wm−2 τ−1) for the radiative effect within the atmosphere.

2016 ◽  
Vol 16 (16) ◽  
pp. 10591-10607 ◽  
Author(s):  
Claudia Di Biagio ◽  
Paola Formenti ◽  
Lionel Doppler ◽  
Cécile Gaimoz ◽  
Noel Grand ◽  
...  

Abstract. Pollution aerosols strongly influence the composition of the Western Mediterranean basin, but at present little is known on their optical properties. We report in this study in situ observations of the single scattering albedo (ω) of pollution aerosol plumes measured over the Western Mediterranean basin during the TRAQA (TRansport and Air QuAlity) airborne campaign in summer 2012. Cases of pollution export from different source regions around the basin and at different altitudes between  ∼  160 and 3500 m above sea level were sampled during the flights. Data from this study show a large variability of ω, with values between 0.84–0.98 at 370 nm and 0.70–0.99 at 950 nm. The single scattering albedo generally decreases with the wavelength, with some exception associated to the mixing of pollution with sea spray or dust particles over the sea surface. The lowest values of ω (0.84–0.70 between 370 and 950 nm) are measured in correspondence of a fresh plume possibly linked to ship emissions over the basin. The range of variability of ω observed in this study seems to be independent of the source region around the basin, as well as of the altitude and aging time of the plumes. The observed variability of ω reflects in a large variability for the complex refractive index of pollution aerosols, which is estimated to span in the large range 1.41–1.77 and 0.002–0.097 for the real and the imaginary parts, respectively, between 370 and 950 nm. Radiative calculations in clear-sky conditions were performed with the GAME radiative transfer model to test the sensitivity of the aerosol shortwave Direct Radiative Effect (DRE) to the variability of ω as observed in this study. Results from the calculations suggest up to a 50 and 30 % change of the forcing efficiency (FE), i.e. the DRE per unit of optical depth, at the surface (−160/−235 W m−2 τ−1 at 60° solar zenith angle) and at the Top-Of-Atmosphere (−137/−92 W m−2 τ−1) for ω varying between its maximum and minimum value. This induces a change of up to an order of magnitude (+23/+143 W m−2 τ−1) for the radiative effect within the atmosphere.


2003 ◽  
Vol 3 (5) ◽  
pp. 4671-4700
Author(s):  
D. S. Balis ◽  
V. Amiridis ◽  
C. Zerefos ◽  
A. Kazantzidis ◽  
S. Kazadzis ◽  
...  

Abstract. Routine lidar measurements of the vertical distribution of the aerosol extinction coefficient and the extinction-to-backscatter ratio have been performed at Thessaloniki, Greece using a Raman lidar system in the frame of the EARLINET project since 2000. Spectral and broadband UV-B irradiance measurements, as well as total ozone observations, were available whenever lidar measurements were obtained. From the available measurements several cases could be identified that allowed the study of the effect of different types of aerosol on the levels of the UV-B solar irradiance at the Earth's surface. The TUV radiative transfer model has been used to simulate the irradiance measurements, using total ozone and the lidar aerosol data as input. From the comparison of the model results with the measured spectra the effective single scattering albedo was determined using an iterative procedure, which has been verified against results from the 1998 Lindenberg Aerosol Characterization Experiment. It is shown that the same aerosol optical depth and same total ozone values can show differences up to 10% in the UV-B irradiance at the Earth's surface, which can be attributed to differences in the aerosol type. It is shown that the combined use of the estimated single scattering albedo and the measured extinction-to-backscatter ratio leads to a better characterization of the aerosol type probed.


2007 ◽  
Vol 7 (6) ◽  
pp. 17401-17427
Author(s):  
J. J. Michalsky ◽  
P. W. Kiedron

Abstract. The first successful deployment of the fully-operational ultraviolet rotating shadow-band spectroradiometer occurred during the May 2003 U.S. Department of Energy's Atmospheric Radiation Measurement program's Aerosol Intensive Observation Period. The aerosol properties in the visible range were characterized using redundant measurements with several instruments to determine the column aerosol optical depth, the single scattering albedo, and the asymmetry parameter needed as input for radiative transfer calculations of the downwelling direct normal and diffuse horizontal solar irradiance in clear-sky conditions. The Tropospheric Ultraviolet and Visible (TUV) radiative transfer model developed by Madronich and his colleagues at the U.S. National Center for Atmospheric Research was used for the calculations of the spectral irradiance between 300–360 nm. Since there are few ultraviolet measurements of aerosol properties, most of the input aerosol data for the radiative transfer model are based on the assumption that UV input parameters can be extrapolated from the visible portion of the spectrum. Disagreements between available extraterrestrial spectra, which are discussed briefly, suggested that instead of comparing irradiances that measured and modeled spectral transmittances between 300–360 nm should be compared for the seven cases studied. These cases included low to moderate aerosol loads and low to high solar-zenith angles. A procedure for retrieving single scattering albedo in the ultraviolet based on the comparisons of direct and diffuse transmittance is outlined.


2004 ◽  
Vol 4 (2) ◽  
pp. 307-321 ◽  
Author(s):  
D. S. Balis ◽  
V. Amiridis ◽  
C. Zerefos ◽  
A. Kazantzidis ◽  
S. Kazadzis ◽  
...  

Abstract. Routine lidar measurements of the vertical distribution of the aerosol extinction coefficient and the extinction-to-backscatter ratio have been performed at Thessaloniki, Greece using a Raman lidar system in the frame of the EARLINET project since 2000. Co-located spectral and broadband solar UV-B irradiance measurements, as well as total ozone observations, were available whenever lidar measurements were obtained. From the available measurements several cases could be identified that allowed the study of the effect of different types of aerosol on the levels of the UV-B solar irradiance at the Earth's surface. The TUV radiative transfer model has been used to simulate the irradiance measurements, using total ozone and the lidar aerosol data as input. From the comparison of the model results with the measured spectra the effective single scattering albedo was determined using an iterative procedure, which has been verified against results from the 1998 Lindenberg Aerosol Characterization Experiment. It is shown that for the same aerosol optical depth and for the same total ozone values the UV-B irradiances at the Earth's surface can show differences up to 10%, which can be attributed to differences in the aerosol type. It is shown that the combined use of the estimated single scattering albedo and of the measured extinction-to-backscatter ratio leads to a better characterization of the aerosol type probed.


2010 ◽  
Vol 10 (2) ◽  
pp. 331-340 ◽  
Author(s):  
I. Ialongo ◽  
V. Buchard ◽  
C. Brogniez ◽  
G. R. Casale ◽  
A. M. Siani

Abstract. The aerosol Single Scattering Albedo (SSA) and Absorbing Aerosol Optical Depth (AAOD) at 320.1 nm are derived at Rome site by the comparison between Brewer and modelled spectra. The UVSPEC radiative transfer model is used to calculate the UV irradiances for different SSA values, taking into account as input data total ozone and Aerosol Optical Depth (AOD) obtained from Brewer spectral measurements. The accuracy in determining SSA depends on the aerosol amount and on Solar Zenith Angle (SZA) value: SSA uncertainty increases when AOD and SZA decrease. The monthly mean values of SSA and AAOD during the period January 2005–June 2008 are analysed, showing a monthly and seasonal variability. It is found that the SSA and AAOD averages are 0.80±0.08 and 0.056±0.028, respectively. AAOD retrievals are also used to quantify the error in the Ozone Monitoring Instrument (OMI) surface UV products due to absorbing aerosols, not included in the current OMI UV algorithm. OMI and Brewer UV irradiances at 324.1 nm and Erythemal Dose Rates (EDRs) under clear sky conditions, are compared as a function of AAOD. Three methods are considered to investigate on the applicability of an absorbing aerosol correction on OMI UV data at Rome site. Depending on the correction methodology, the bias value decreases from 18% to 2% for spectral irradiance at 324.1 nm and from 25% to 8% for EDR.


2008 ◽  
Vol 8 (5) ◽  
pp. 17987-18005 ◽  
Author(s):  
A. Bagheri ◽  
B. Kjeldstad ◽  
B. Johnsen

Abstract. The aerosol optical depth (AOD) from biomass burning aerosols from eastern Europe was measured in Trondheim, Norway (63.43° N , 10.43° E) in May 2006. The event was observed as far as the Arctic. In the first part of this paper, the surface measurements of direct and global UV radiation (and retrieved AOD) are used to simulate the data using a radiative transfer model. Measured and simulated data were used to study the effect of biomass aerosol on the levels of surface UV radiation. We found reductions of up to 31%, 15% and 2% in direct, global and diffuse surface UV irradiance (at 350 nm, SZA=50°±0.5°) as compared to typical aerosol conditions. In the second part of our study, surface measurements of global and direct irradiance at five wavelength in UVB and UVA (305, 313, 320, 340 and 380 nm) were coupled with a radiative transfer model to produce values of aerosol single scattering albedo, ω. The aerosol single scattering albedo for biomass aerosols is compared to ω for background aerosols. The values of ω for biomass aerosols were 0.76 at 305 nm, 0.75 at 313 nm, 0.79 at 320 nm, 0.72 at 340 nm and 0.80 at 380 nm.


Author(s):  
Ioannis-Panagiotis Raptis ◽  
Stelios Kazadzis ◽  
Kostas Eleftheratos ◽  
Vassilis Amiridis ◽  
Ilias Fountoulakis

The Absorbing/scattering nature of aerosols affects the total radiative forcing and this absorption to total extinction ratio is quantified by single scattering albedo (SSA). Effect of SSA in the Ultraviolet (UV) irradiance is less studied and limited measurements are available. SSA retrieved at Athens, Greece during 2009-2014 from Ultraviolet Multifilter Radiometer (UVMFR) at 332 and 368 nm, were used to calculate incoming UV irradiance, alongside with ones from AERONET at visible wavelengths, from OMI satellite at 342.5 nm and from AEROCOM climatological database at 300 nm. UVA and UVB irradiances were estimated using a Radiative Transfer Model and we found that relative differences could be as high as 20%, while average relative differences varied from 2% to 8.7 % for the whole experimental period. Both UVA and UVB drop by a rate of ~12% for 0.05 aerosol absorption optical depth compared to ones estimated using SSA at visible range. Brewer irradiance measurements at 324nm were used to validate simulated irradiances and a better agreement was found when UVMFR SSAs were used with an average difference of 0.86%, while when using visible or climatological input, relative differences were estimated +4.91 and +4.15% accordingly.


2018 ◽  
Vol 11 (9) ◽  
pp. 5261-5277 ◽  
Author(s):  
Jiyunting Sun ◽  
J. Pepijn Veefkind ◽  
Peter van Velthoven ◽  
Pieternel F. Levelt

Abstract. The absorbing aerosol index (AAI) is a qualitative parameter directly calculated from satellite-measured reflectance. Its sensitivity to absorbing aerosols in combination with a long-term data record since 1978 makes it an important parameter for climate research. In this study, we attempt to quantify aerosol absorption by retrieving the single-scattering albedo (ω0) at 550 nm from the satellite-measured AAI. In the first part of this study, AAI sensitivity studies are presented exclusively for biomass-burning aerosols. Later on, we employ a radiative transfer model (DISAMAR) to simulate the AAI measured by the Ozone Monitoring Instrument (OMI) in order to derive ω0 at 550 nm. Inputs for the radiative transfer calculations include satellite measurement geometry and surface conditions from OMI, aerosol optical thickness (τ) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and aerosol microphysical parameters from the AErosol RObotic NETwork (AERONET), respectively. This approach is applied to the Chile wildfires for the period from 26 to 30 January 2017, when the OMI-observed AAI of this event reached its peak. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) overpasses missed the evolution of the smoke plume over the research region; therefore the aerosol profile is parameterized. The simulated plume is at an altitude of 4.5–4.9 km, which is in good agreement with available CALIOP backscatter coefficient measurements. The data may contain pixels outside the plume, so an outlier detection criterion is applied. The results show that the AAI simulated by DISAMAR is consistent with satellite observations. The correlation coefficients fall into the range between 0.85 and 0.95. The retrieved mean ω0 at 550 nm for the entire plume over the research period from 26 to 30 January 2017 varies from 0.81 to 0.87, whereas the nearest AERONET station reported ω0 between 0.89 and 0.92. The difference in geolocation between the AERONET site and the plume, the assumption of homogeneous plume properties, the lack of the aerosol profile information and the uncertainties in the inputs for radiative transfer calculation are primarily responsible for this discrepancy in ω0.


2012 ◽  
Vol 5 (5) ◽  
pp. 6991-7023 ◽  
Author(s):  
S. Kazadzis ◽  
N. Kouremeti ◽  
V. Amiridis ◽  
A. Arola ◽  
E. Gerasopoulos

Abstract. We have combined sun and sky radiance measurements from a CIMEL sun-photometer and total and diffuse UV irradiance measurements with a multi-filter rotating shadow-band radiometer (UVMFR), in order to calculate aerosol absorption properties (single scattering albedo) in the UV range, for a 10 month period in Athens, Greece. The aerosol extinction optical thickness measured by the CIMEL instrument has been used for the inter-calibration of the UVMFR. The measurements from both instruments were used as input to a radiative transfer model and the single scattering albedo (SSA) for 368 nm and 332 nm has been calculated. The SSA values at these wavelengths, together with synchronous SSA, CIMEL-derived, retrievals at 440 nm, show a mean of 0.88, 0.86 and 0.80, with lowest values (higher absorption) towards lower wavelengths. In addition, noticeable diurnal variations of the SSA in all wavelengths are revealed, with amplitudes in the order of 0.05. Higher SSA wavelength dependence is found for cases of lower Ångström exponents and also an SSA decrease with decreasing extinction optical depth, suggesting an effect of the different aerosol composition.


Sign in / Sign up

Export Citation Format

Share Document