scholarly journals Overview of mercury dry deposition, litterfall, and throughfall studies

2016 ◽  
Author(s):  
L. Paige Wright ◽  
Leiming Zhang ◽  
Frank J. Marsik

Abstract. The current knowledge concerning mercury dry deposition is reviewed, including dry deposition algorithms used in chemical transport models (CTMs) and at monitoring sites and related deposition calculations, measurement methods and studies for quantifying dry deposition of gaseous oxidized mercury (GOM) and particulate bound mercury (PBM), and measurement studies of litterfall and throughfall mercury. Measured median GOM plus PBM dry deposition in Asia (10.7 μg m−2 yr−1) almost double that in North America (6.1 μg m−2 yr−1) due to the higher anthropogenic emissions in Asia. Measured median litterfall and throughfall mercury are 22.3 and 56.5 μg m−2 yr−1, respectively, in Asia, 12.8 and 16.3 μg m−2 yr−1 in Europe, and 11.9 and 7.0 μg m−2 yr−1 in North America. The much higher litterfall mercury than GOM plus PBM dry deposition suggests the important contribution of gaseous elemental mercy (GEM) to mercury dry deposition to vegetated canopies. Over all the regions, including the Amazon, dry deposition, estimated as the sum of litterfall and throughfall minus open-field wet deposition, is more dominant than wet deposition for Hg deposition. Regardless of the measurement or modelling method used, a factor of two or larger uncertainties in GOM plus PBM dry deposition need to be kept in mind when using these numbers for mercury impact studies.

2016 ◽  
Vol 16 (21) ◽  
pp. 13399-13416 ◽  
Author(s):  
L. Paige Wright ◽  
Leiming Zhang ◽  
Frank J. Marsik

Abstract. The current knowledge concerning mercury dry deposition is reviewed, including dry-deposition algorithms used in chemical transport models (CTMs) and at monitoring sites and related deposition calculations, measurement methods and studies for quantifying dry deposition of gaseous oxidized mercury (GOM) and particulate bound mercury (PBM), and measurement studies of litterfall and throughfall mercury. Measured median GOM plus PBM dry deposition in Asia (10.7 µg m−2 yr−1) is almost double that in North America (6.1 µg m−2 yr−1) due to the higher anthropogenic emissions in Asia. The measured mean GOM plus PBM dry deposition in Asia (22.7 µg m−2 yr−1), however, is less than that in North America (30.8 µg m−2 yr−1). The variations between the median and mean values reflect the influences that single extreme measurements can have on the mean of a data set. Measured median litterfall and throughfall mercury are, respectively, 34.8 and 49.0 µg m−2 yr−1 in Asia, 12.8 and 16.3 µg m−2 yr−1 in Europe, and 11.9 and 7.0 µg m−2 yr−1 in North America. The corresponding measured mean litterfall and throughfall mercury are, respectively, 42.8 and 43.5 µg m−2 yr−1 in Asia, 14.2 and 19.0 µg m−2 yr−1 in Europe, and 12.9 and 9.3 µg m−2 yr−1 in North America. The much higher litterfall mercury than GOM plus PBM dry deposition suggests the important contribution of gaseous elemental mercy (GEM) to mercury dry deposition to vegetated canopies. Over all the regions, including the Amazon, dry deposition, estimated as the sum of litterfall and throughfall minus open-field wet deposition, is more dominant than wet deposition for Hg deposition. Regardless of the measurement or modelling method used, a factor of 2 or larger uncertainties in GOM plus PBM dry deposition need to be kept in mind when using these numbers for mercury impact studies.


2020 ◽  
Vol 20 (8) ◽  
pp. 4933-4949 ◽  
Author(s):  
Genki Katata ◽  
Kazuhide Matsuda ◽  
Atsuyuki Sorimachi ◽  
Mizuo Kajino ◽  
Kentaro Takagi

Abstract. Dry deposition has an impact on nitrogen status in forest environments. However, the mechanism for the high dry-deposition rates of fine nitrate particles (NO3-) observed in forests remains unknown and is thus a potential source of error in chemical transport models (CTMs). Here, we modified and applied a multilayer land surface model coupled with dry-deposition and aerosol dynamic processes for a temperate mixed forest in Japan. This represents the first application of such a model to ammonium nitrate (NH4NO3) gas–particle conversion (gpc) and the aerosol water uptake of reactive nitrogen compounds. Thermodynamics, kinetics, and dry deposition for mixed inorganic particles are modeled by a triple-moment modal method. Data for inorganic mass and size-resolved total number concentrations measured by a filter pack and electrical low-pressure impactor in autumn were used for model inputs and subsequent numerical analysis. The model successfully reproduces turbulent fluxes observed above the canopy and vertical micrometeorological profiles noted in our previous studies. The sensitivity tests with and without gpc demonstrated clear changes in the inorganic mass and size-resolved total number concentrations within the canopy. The results also revealed that within-canopy evaporation of NH4NO3 under dry conditions significantly enhances the deposition flux of fine-NO3- and fine-NH4+ particles, while reducing the deposition flux of nitric acid gas (HNO3). As a result of the evaporation of particulate NH4NO3, the calculated daytime mass flux of fine NO3- over the canopy was 15 times higher in the scenario of “gpc” than in the scenario of “no gpc”. This increase caused high contributions from particle deposition flux (NO3- and NH4+) to total nitrogen flux over the forest ecosystem (∼39 %), although the contribution of NH3 was still considerable. A dry-deposition scheme coupled with aerosol dynamics may be required to improve the predictive accuracy of chemical transport models for the surface concentration of inorganic reactive nitrogen.


2019 ◽  
Author(s):  
Genki Katata ◽  
Kazuhide Matsuda ◽  
Atsuyuki Sorimachi ◽  
Mizuo Kajino ◽  
Kentaro Takagi

Abstract. Although dry deposition has an impact on nitrogen status in the forest environments, the mechanism for high dry deposition rates of fine nitrate aerosols (NO3-) observed in forests remains unknown and is a potential source of error in chemical transport models. Here we developed a new multi-layer land surface model coupled with dry deposition and aerosol dynamics processes for a temperate mixed forest in Japan. The processes of thermodynamics, kinetics, and dry deposition for mixed inorganic aerosols are modeled by a triple-moment modal method. The new model overall reproduces observed turbulent fluxes above the canopy and vertical micrometeorological profiles, as well as inorganic mass and size-resolved total number concentrations within the canopy. Sensitivity tests revealed that the within-canopy evaporation of ammonium nitrate (NH4NO3) under dry conditions significantly enhances deposition flux for fine NO3- and NH4+ aerosols, while reducing deposition flux for nitric acid gas (HNO3). A dry deposition scheme coupled with aerosol dynamics may be required to improve the predictive accuracy of chemical transport models for the surface concentration of inorganic reactive nitrogen.


2012 ◽  
Vol 12 (9) ◽  
pp. 23645-23677 ◽  
Author(s):  
Y. P. Pan ◽  
Y. S. Wang ◽  
G. Q. Tang ◽  
D. Wu

Abstract. The increasing anthropogenic emissions of acidic compounds have induced acid deposition accompanied by acidification in the aquatic and terrestrial ecosystems worldwide. However, comprehensive assessment of spatial patterns and long-term trends of acid deposition in China remains a challenge due to a paucity of field-based measurement data, in particular for dry deposition. Here we quantify the sulfur (S) deposition on a regional scale via precipitation, particles and gases during a 3-yr observation campaign at ten selected sites in Northern China. Results show that the total S deposition flux in the target area ranged from 35.0 to 100.7 kg S ha−1 yr−1, categorized as high levels compared to those documented in Europe, North America, and East Asia. The ten-site, 3-yr average total S deposition was 64.8 kg S ha−1 yr−1, with 32% attributed to wet deposition, and the rest attributed to dry deposition. Compared with particulate sulfate, gaseous SO2 was the major contributor of dry-deposited S, contributing approximately 49% to the total flux. Wet deposition of sulfate showed pronounced seasonal variations with maximum in summer and minimum in winter, corresponding to precipitation patterns in Northern China. However, the spatial and inter-annual differences in the wet deposition were not significant, which were influenced by the precipitation amount, scavenging ratio and the concentrations of atmospheric S compounds. In contrast, the relatively large dry deposition of SO2 and sulfate during cold season, especially at industrial areas, was reasonably related to the local emissions from home heating. Although seasonal fluctuations were constant, clear spatial differences were observed in the total S deposition flux and higher values were also found in industrial areas with huge emissions of SO2. These findings indicate that human activity has dramatically altered the atmospheric S deposition and thus regional S cycles. To systematically illustrate the potential effects of acidifying deposition on the receiving environment, we calculated the deposition of "potential acidity" that takes into account the microbial transformation of ammonium to nitrate in the ecosystems, resulting in the release of hydrogen ions. The estimated total "acid equivalents" deposition of S and nitrogen (N) fell within the range of 4.2–11.6 keq ha−1 yr−1, with a ten-site, 3-yr mean of 8.4 keq ha−1 yr−1. This value is significantly higher than that of other regions in the world and exceeds the critical loads for natural ecosystems in Northern China, thus prompting concerns regarding ecological impacts. The contribution of S to total acid deposition was comparable to that of N at most of sites; however, the importance of S on acidification risks was more pronounced in the industrial sites, highlighting that further SO2 abatement from industrial emissions is still needed. Taking these findings and our previous studies together, a multi-pollutant perspective and joint mitigate strategies to abate SO2 and NH3 simultaneously in the target areas are recommended to protect the natural ecosystems from excess acid deposition caused by anthropogenic emissions.


2012 ◽  
Vol 12 (14) ◽  
pp. 6095-6111 ◽  
Author(s):  
Y. Zhang ◽  
L. Jaeglé ◽  
A. van Donkelaar ◽  
R. V. Martin ◽  
C. D. Holmes ◽  
...  

Abstract. We have developed a new nested-grid mercury (Hg) simulation over North America with a 1/2° latitude by 2/3° longitude horizontal resolution employing the GEOS-Chem global chemical transport model. Emissions, chemistry, deposition, and meteorology are self-consistent between the global and nested domains. Compared to the global model (4° latitude by 5° longitude), the nested model shows improved skill at capturing the high spatial and temporal variability of Hg wet deposition over North America observed by the Mercury Deposition Network (MDN) in 2008–2009. The nested simulation resolves features such as higher deposition due to orographic precipitation, land/ocean contrast and and predicts more efficient convective rain scavenging of Hg over the southeast United States. However, the nested model overestimates Hg wet deposition over the Ohio River Valley region (ORV) by 27%. We modify anthropogenic emission speciation profiles in the US EPA National Emission Inventory (NEI) to account for the rapid in-plume reduction of reactive to elemental Hg (IPR simulation). This leads to a decrease in the model bias to −2.3% over the ORV region. Over the contiguous US, the correlation coefficient (r) between MDN observations and our IPR simulation increases from 0.60 to 0.78. The IPR nested simulation generally reproduces the seasonal cycle in surface concentrations of speciated Hg from the Atmospheric Mercury Network (AMNet) and Canadian Atmospheric Mercury Network (CAMNet). In the IPR simulation, annual mean gaseous and particulate-bound Hg(II) are within 140% and 11% of observations, respectively. In contrast, the simulation with unmodified anthropogenic Hg speciation profiles overestimates these observations by factors of 4 and 2 for gaseous and particulate-bound Hg(II), respectively. The nested model shows improved skill at capturing the horizontal variability of Hg observed over California during the ARCTAS aircraft campaign. The nested model suggests that North American anthropogenic emissions account for 10–22% of Hg wet deposition flux over the US, depending on the anthropogenic emissions speciation profile assumed. The modeled percent contribution can be as high as 60% near large point sources in ORV. Our results indicate that the North American anthropogenic contribution to dry deposition is 13–20%.


2015 ◽  
Vol 15 (8) ◽  
pp. 11925-11983 ◽  
Author(s):  
X. W. Fu ◽  
H. Zhang ◽  
X. Wang ◽  
B. Yu ◽  
C.-J. Lin ◽  
...  

Abstract. China is presently the largest contributor of global anthropogenic Hg emission to the atmosphere. Over the past two decades, extensive studies have been conducted to characterize the concentration and speciation of atmospheric Hg in China. These studies provide important insight into the spatial and temporal distributions of atmospheric Hg species in China through ground-based measurements at a wide range of altitude over diverse geographical locations, and cruise and flight campaigns. In this critical review, we synthesize the available data to date to delineate the spatial and temporal patterns of atmospheric Hg, the long-range transport pattern of atmospheric Hg, and the impacts of Hg emissions on atmospheric Hg distribution and deposition in China. Atmospheric Hg species in China are substantially elevated compared to the background values in the Northern Hemisphere. The highly elevated Hg levels in Chinese urban areas were derived from local and regional anthropogenic and natural emissions, while long-range transport plays an important role in the atmospheric Hg concentration in remote areas. Preliminary studies suggested that atmosphere GEM levels are increasing at an urban and remote sites over the last decade, which were likely caused by the increasing anthropogenic emissions. The anthropogenic emission quantity in China estimated through the observed concentration ratios of GEM to CO (observed from 2001 to 2013) is approximately 983 t in 2009, ~ 3 folds of the published anthropogenic GEM emission inventories using activity data. Wet deposition fluxes of Hg in remote regions are low but the fluxes in Chinese urban areas are much higher than that in urban areas of North America and Europe. Dry deposition fluxes of Hg measured as litterfall input in forest areas of China were 2.5–9.0 times higher than the wet deposition fluxes and 1.8–13.6 times higher than the dry deposition fluxes of Hg in North America and Europe, suggesting that dry deposition to forest may be an important sink of atmospheric Hg in China.


2015 ◽  
Vol 8 (9) ◽  
pp. 2857-2876 ◽  
Author(s):  
H. S. Chen ◽  
Z. F. Wang ◽  
J. Li ◽  
X. Tang ◽  
B. Z. Ge ◽  
...  

Abstract. Atmospheric mercury (Hg) is a toxic pollutant and can be transported over the whole globe due to its long lifetime in the atmosphere. For the purpose of assessing Hg hemispheric transport and better characterizing regional Hg pollution, a global nested atmospheric Hg transport model (GNAQPMS-Hg – Global Nested Air Quality Prediction Modeling System for Hg) has been developed. In GNAQPMS-Hg, the gas- and aqueous-phase Hg chemistry representing the transformation among three forms of Hg: elemental mercury (Hg(0)), divalent mercury (Hg(II)), and primary particulate mercury (Hg(P)) are calculated. A detailed description of the model, including mercury emissions, gas- and aqueous-phase chemistry, and dry and wet deposition is given in this study. Worldwide observations including extensive data in China have been collected for model evaluation. Comparison results show that the model reasonably simulates the global mercury budget and the spatiotemporal variation of surface mercury concentrations and deposition. Overall, model predictions of annual total gaseous mercury (TGM) and wet deposition agree with observations within a factor of 2, and within a factor of 5 for oxidized mercury and dry deposition. The model performs significantly better in North America and Europe than in East Asia. This can probably be attributed to the large uncertainties in emission inventories, coarse model resolution and to the inconsistency between the simulation and observation periods in East Asia. Compared to the global simulation, the nested simulation shows improved skill at capturing the high spatial variability of surface Hg concentrations and deposition over East Asia. In particular, the root mean square error (RMSE) of simulated Hg wet deposition over East Asia is reduced by 24 % in the nested simulation. Model sensitivity studies indicate that Chinese primary anthropogenic emissions account for 30 and 62 % of surface mercury concentrations and deposition over China, respectively. Along the rim of the western Pacific, the contributions from Chinese sources are 11 and 15.2 % over the Korean Peninsula, 10.4 and 8.2 % over Southeast Asia, and 5.7 and 5.9 % over Japan. But for North America, Europe and western Asia, the contributions from China are all below 5 %.


2019 ◽  
Author(s):  
Lei Zhang ◽  
Peisheng Zhou ◽  
Shuzhen Cao ◽  
Yu Zhao

Abstract. One of the most important processes in the global mercury biogeochemical cycling is the deposition of atmospheric mercury, including gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM), to terrestrial surfaces. In this paper, methods for the observation of wet, dry, litterfall, throughfall, and cloud/fog deposition and models for mercury dry deposition are reviewed. Surrogate surface methods with cation exchange membranes are widely used for GOM dry deposition measurements, while observation methods for GEM dry deposition are more diverse. The methodology for Hg wet deposition is more mature, but the influence of cloud/fog scavenging is easy to neglect. Dry deposition models for speciated mercury have high uncertainties owing to the presence of sensitive parameters related to GOM chemical forms. Observation networks for mercury wet deposition have been developed worldwide, with the Global Mercury Observation System (GMOS) covering the northern hemisphere, the tropics, and the southern hemisphere. Wet deposition implies the spatial distribution of atmospheric mercury pollution, while GOM dry deposition depends highly on the elevation. Litterfall Hg deposition is crucial to forests. Urban areas have high wet deposition and PBM dry deposition because of high reactive mercury levels. Grasslands and forests have significant GOM and GEM dry deposition, respectively. Evergreen broadleaf forests bear high litterfall Hg deposition. Future research needs have been proposed based on the current knowledge of global mercury deposition to terrestrial surfaces.


2014 ◽  
Vol 7 (5) ◽  
pp. 6949-6996
Author(s):  
H. S. Chen ◽  
Z. F. Wang ◽  
J. Li ◽  
X. Tang ◽  
B. Z. Ge ◽  
...  

Abstract. Atmospheric mercury (Hg) is a toxic pollutant and can be transported over the whole globe due to its long lifetime in the atmosphere. For the purpose of assessing Hg hemispheric transport and better characterizing regional Hg pollution, a global nested atmospheric Hg transport model (GNAQPMS-Hg) has been developed. In GNAQPMS-Hg, the gas and aqueous phase Hg chemistry representing the transformation among three forms of Hg: elemental mercury (Hg(0)), divalent mercury (Hg(II)), and primary particulate mercury (Hg(P)) are calculated. A detailed description of the model, including mercury emissions, gas and aqueous phase chemistry, and dry and wet deposition is given in this study. Worldwide observations including extensive data in China have been collected for model evaluation. Comparison results show that the model reasonably simulates the global mercury budget and the spatial–temporal variation of surface mercury concentrations and deposition. Overall, model predictions of annual total gaseous mercury (TGM) and wet deposition agree with observations within a factor of two, and within a factor of five for oxidized mercury and dry deposition. The model performs significantly better in North America and Europe than in East Asia. This can probably be attributed to the large uncertainties in emission inventories, coarse model resolution and to the inconsistency between the simulation and observation periods in East Asia. Compared to the global simulation, the nested simulation shows improved skill at capturing the high spatial variability of Hg concentrations and deposition over East Asia. In particular, the root mean square error (RMSE) of simulated Hg wet deposition over East Asia is reduced by 24% in the nested simulation. Model sensitivity studies indicate that Chinese primary anthropogenic emissions account for 30 and 62% of surface mercury concentrations and deposition over China, respectively. Along the rim of the western Pacific, the contributions from Chinese sources are 11 and 15.2% over the Korean Peninsula, 10.4 and 8.2% over Southeast Asia, and 5.7 and 5.9% over Japan. But for North America, Europe and West Asia, the contributions from China are all below 5%.


2010 ◽  
Vol 10 (12) ◽  
pp. 30999-31038
Author(s):  
P. Jimenez-Guerrero ◽  
O. Jorba ◽  
M. T. Pay ◽  
J. P. Montavez ◽  
S. Jerez ◽  
...  

Abstract. A number of attempts have been made to incorporate sea-salt aerosols (SSA) source functions in chemistry transport models with varying results according to the complexity of the scheme considered. This contribution compares the inclusion of two different SSA algorithms in two chemistry transport models: CMAQ and CHIMERE. The main goal is to examine the differences in average SSA mass and composition and to study the seasonality of the prediction of SSA when applied to the Mediterranean area with high resolution in a reference year. Dry and wet deposition schemes are also analyzed to better understand the differences observed between both models in the target area. The applied emission algorithm in CHIMERE uses a semi-empirical formulation which obtains the surface emission rate of SSA as a function of the surface wind speed cubed and particle size. The emission parameterization included within CMAQ is somehow more sophisticated, since fluxes of SSA are corrected with relative humidity. In order to evaluate their strengths and weaknesses, the participating algorithms as implemented in the chemistry transport models were evaluated against AOD measurements from Aeronet and available surface measurements in Southern Europe and the Mediterranean area, showing biases around −0.003 and −1.2 μg m−3, respectively. The results indicate that both models represent accurately the patterns and dynamics of SSA and its non-uniform behavior in the Mediterranean basin, showing a strong seasonality. The levels of SSA vary strongly across the Western and the Eastern Mediterranean, reproducing CHIMERE higher annual levels in the Aegean Sea (12 μg m−3) and CMAQ in the Gulf of Lion (9 μg m−3). The large difference found for the ratio PM2.5/total SSA in CMAQ and CHIMERE is also investigated. The dry and wet removal rates are very similar for both models despite the different schemes implemented. Dry deposition essentially follows the surface drag stress patterns, meanwhile wet deposition is more scattered over the continent. CMAQ tends to provide larger amounts of SSA dry deposition over the Northern Mediterranean (0.7–1.0 g m−2 yr−1), meanwhile the Southeastern Mediterranean accounts for the maximum annual dry deposition in the CHIMERE model (0.9–1.5 g m−2 yr−1). The wet deposition is dominated by the accumulation mode and is strongly correlated to the precipitation patterns, showing CMAQ a higher wet deposition/total deposition ratio over coastal mountain chains. The results of both models constitute a step towards increasing the understanding of the SSA dynamics in a complex area as the Mediterranean.


Sign in / Sign up

Export Citation Format

Share Document