scholarly journals Black Carbon, Organic Carbon, and Co-Pollutants Emissions and Energy Efficiency from Artisanal Brick Production in Mexico

Author(s):  
Miguel Zavala ◽  
Luisa T. Molina ◽  
Pablo Maiz ◽  
Israel Monsivais ◽  
Judith C. Chow ◽  
...  

Abstract. In many parts of the developing world and economies in transition, small-scale traditional brick kilns are a notorious source of urban air pollution. Many are both energy inefficient and burn highly polluting fuels that emit significant levels of black carbon (BC), organic carbon (OC) and other atmospheric pollutants into local communities, resulting in severe health and environmental impacts. However, only a very limited number of studies are available on the emission characteristics of brick kilns; thus there is a need to characterize their gaseous and particulate matter (PM) emission factors to better assess their overall contribution to emissions inventories and to quantify their ecological, human health, and climate impacts. In this study, the fuel-, energy-, and brick-based emissions factors and time-based emission ratios of BC, OC, inorganic PM components, CO, SO2, CH4, NOx, and selected volatile organic compounds (VOCs) from two traditional artisanal kilns and one MK2 kiln in Mexico were quantified using the tracer ratio sampling technique. Simultaneous measurements of PM components, CO and CO2 were also obtained using a filter-based sampling probe technique. Additional measurements included the internal temperature of the brick kilns, mechanical resistance of bricks produced, and characteristics of fuels employed. The results show that both techniques capture similar temporal profiles of the brick kiln emissions and produce comparable emission factors, indicating that the tracer ratio technique can be an alternative option to the filter-based sampling probe technique in understanding the temporal profile of the chemical composition of brick kilns emissions. A more integrated inter-comparison of the brick kilns' performances was obtained by simultaneously assessing emissions factors, energy efficiency, fuel consumption, and the quality of the bricks produced. Overall, a well-designed and operated MK2 kiln produced lower PM2.5, BC, OC emission factors and higher energy efficiency than the traditional artisanal brick kilns. Average fuel-based BC emission factors ranged from 0.15–0.58 g/kg-fuel whereas BC / OC mass ratios ranged from 0.9–5.2, depending on the kiln type. The results from this study contribute to the limited number of databases available on the emission characteristics of the informal brick production sector.

2018 ◽  
Vol 18 (8) ◽  
pp. 6023-6037 ◽  
Author(s):  
Miguel Zavala ◽  
Luisa T. Molina ◽  
Pablo Maiz ◽  
Israel Monsivais ◽  
Judith C. Chow ◽  
...  

Abstract. In many parts of the developing world and economies in transition, small-scale traditional brick kilns are a notorious source of urban air pollution. Many are both energy inefficient and burn highly polluting fuels that emit significant levels of black carbon (BC), organic carbon (OC) and other atmospheric pollutants into local communities, resulting in severe health and environmental impacts. However, only a very limited number of studies are available on the emission characteristics of brick kilns; thus, there is a need to characterize their gaseous and particulate matter (PM) emission factors to better assess their overall contribution to emissions inventories and to quantify their ecological, human health, and climate impacts. In this study, the fuel-, energy-, and brick-based emissions factors and time-based emission ratios of BC, OC, inorganic PM components, CO, SO2, CH4, NOx, and selected volatile organic compounds (VOCs) from three artisanal brick kilns with different designs in Mexico were quantified using the tracer ratio sampling technique. Simultaneous measurements of PM components, CO, and CO2 were also obtained using a sampling probe technique. Additional measurements included the internal temperature of the brick kilns, mechanical resistance of bricks produced, and characteristics of fuels employed. Average fuel-based BC emission factors ranged from 0.15 to 0.58 g (kg fuel)−1, whereas BC∕OC mass ratios ranged from 0.9 to 5.2, depending on the kiln type. The results show that both techniques capture similar temporal profiles of the brick kiln emissions and produce comparable emission factors. A more integrated inter-comparison of the brick kilns' performances was obtained by simultaneously assessing emissions factors, energy efficiency, fuel consumption, and the quality of the bricks produced.


2017 ◽  
Author(s):  
Sekou Keita ◽  
Cathy Liousse ◽  
Véronique Yoboué ◽  
Pamela Dominutti ◽  
Benjamin Guinot ◽  
...  

Abstract. A number of campaigns have been carried out to establish the emission factors of pollutants from fuel combustion in West Africa, as part of work package 2 (‘Air Pollution and Health’) of the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) FP7 program. Emission sources considered here include wood and charcoal burning, charcoal making, open waste burning, and vehicles including trucks, cars, buses and two-wheeled vehicles. Emission factors of total particulate matter, black carbon, primary organic carbon and non-methane volatile organic compounds (NMVOC) have been established. In addition, emission factor measurements were performed in combustion chambers in order to reproduce field burning conditions for tropical hardwood, and obtain particulate emission factors by size (PM0.25, PM1, PM2.5 and PM10). Aerosol samples were collected on quartz filters and analysed using gravimetric and thermal methods. The emission factors of 50 NMVOC species were determined using systematic off-line sampling. Emission factors from wood burning for black carbon, organic carbon and total particulate matter were 0.8 ± 0.4 g/kg of dry matter (dm), 9.29 ± 3.82 g/kg dm and 34.54 ± 20.6 g/kg dm, respectively. From traffic sources, the highest emission factors for all particulate species were emitted from two wheeled vehicles with two-stroke engines (2.74 g/kg fuel for black carbon, 65.11 g/kg fuel for organic carbon and 496 g/kg fuel for total particulate matter). The emissions of NMVOCs were lower than those of particles for all sources aside from traffic. The largest NMVOC emissions were observed for two-stroke two-wheeled vehicles, which were up to three times higher than emissions from light-duty and heavy-duty vehicles. Isoprene and monoterpenes, which are usually associated with biogenic emissions, were present in almost all anthropogenic source categories and could be as significant as aromatic emissions in wood burning (1 g/kg dm). Black carbon was primarily emitted in the ultrafine fraction, with 77 % of the total mass being emitted as particles smaller than 0.25 µm. This study observed higher particle and NMVOC emission factors than those in the current literature. This study underlines the important role of in-situ measurements in deriving realistic and representative emission factors.


2012 ◽  
Vol 12 (9) ◽  
pp. 24895-24954 ◽  
Author(s):  
T. Diehl ◽  
A. Heil ◽  
M. Chin ◽  
X. Pan ◽  
D. Streets ◽  
...  

Abstract. Two historical emission inventories of black carbon (BC), primary organic carbon (OC), and SO2 emissions from land-based anthropogenic sources, ocean-going vessels, air traffic, biomass burning, and volcanoes are presented and discussed for the period 1980–2010. These gridded inventories are provided to the internationally coordinated AeroCom Phase II multi-model hindcast experiments. The horizontal resolution is 0.5°×0.5° and 1.0°×1.0°, while the temporal resolution varies from daily for volcanoes to monthly for biomass burning and aircraft emissions, and annual averages for land-based and ship emissions. One inventory is based on inter-annually varying activity rates of land-based anthropogenic emissions and shows strong variability within a decade, while the other one is derived from interpolation between decadal endpoints and thus exhibits linear trends within a decade. Both datasets capture the major trends of decreasing anthropogenic emissions over the USA and Western Europe since 1980, a sharp decrease around 1990 over Eastern Europe and the former USSR, and a steep increase after 2000 over East and South Asia. The inventory differences for the combined anthropogenic and biomass burning emissions in the year 2005 are 34% for BC, 46% for OC, and 13% for SO2. They vary strongly depending on species, year and region, from about 10% to 40% in most cases, but in some cases the inventories differ by 100% or more. Differences in emissions from wild-land fires are caused only by different choices of the emission factors for years after 1996 which vary by a factor of about 1 to 2 for OC depending on region, and by a combination of emission factors and the amount of dry mass burned for years up to 1996. Volcanic SO2 emissions, which are only provided in one inventory, include emissions from explosive, effusive, and quiescent degassing events for 1167 volcanoes.


Science ◽  
2019 ◽  
Vol 365 (6453) ◽  
pp. 587-590 ◽  
Author(s):  
Pengfei Yu ◽  
Owen B. Toon ◽  
Charles G. Bardeen ◽  
Yunqian Zhu ◽  
Karen H. Rosenlof ◽  
...  

In 2017, western Canadian wildfires injected smoke into the stratosphere that was detectable by satellites for more than 8 months. The smoke plume rose from 12 to 23 kilometers within 2 months owing to solar heating of black carbon, extending the lifetime and latitudinal spread. Comparisons of model simulations to the rate of observed lofting indicate that 2% of the smoke mass was black carbon. The observed smoke lifetime in the stratosphere was 40% shorter than calculated with a standard model that does not consider photochemical loss of organic carbon. Photochemistry is represented by using an empirical ozone-organics reaction probability that matches the observed smoke decay. The observed rapid plume rise, latitudinal spread, and photochemical reactions provide new insights into potential global climate impacts from nuclear war.


2011 ◽  
Vol 116 (D15) ◽  
Author(s):  
L. K. Sahu ◽  
Y. Kondo ◽  
Y. Miyazaki ◽  
Prapat Pongkiatkul ◽  
N. T. Kim Oanh

2015 ◽  
Vol 8 (1) ◽  
pp. 43-55 ◽  
Author(s):  
I. Ježek ◽  
L. Drinovec ◽  
L. Ferrero ◽  
M. Carriero ◽  
G. Močnik

Abstract. We have used two methods for measuring emission factors (EFs) in real driving conditions on five cars in a controlled environment: the stationary method, where the investigated vehicle drives by the stationary measurement platform and the composition of the plume is measured, and the chasing method, where a mobile measurement platform drives behind the investigated vehicle. We measured EFs of black carbon and particle number concentration. The stationary method was tested for repeatability at different speeds and on a slope. The chasing method was tested on a test track and compared to the portable emission measurement system. We further developed the data processing algorithm for both methods, trying to improve consistency, determine the plume duration, limit the background influence and facilitate automatic processing of measurements. The comparison of emission factors determined by the two methods showed good agreement. EFs of a single car measured with either method have a specific distribution with a characteristic value and a long tail of super emissions. Measuring EFs at different speeds or slopes did not significantly influence the EFs of different cars; hence, we propose a new description of vehicle emissions that is not related to kinematic or engine parameters, and we rather describe the vehicle EF with a characteristic value and a super emission tail.


2015 ◽  
Vol 8 (3) ◽  
pp. 2881-2912 ◽  
Author(s):  
J. M. Wang ◽  
C.-H. Jeong ◽  
N. Zimmerman ◽  
R. M. Healy ◽  
D. K. Wang ◽  
...  

Abstract. An automated identification and integration method has been developed to investigate in-use vehicle emissions under real-world conditions. This technique was applied to high time resolution air pollutant measurements of in-use vehicle emissions performed under real-world conditions at a near-road monitoring station in Toronto, Canada during four seasons, through month-long campaigns in 2013–2014. Based on carbon dioxide measurements, over 100 000 vehicle-related plumes were automatically identified and fuel-based emission factors for nitrogen oxides; carbon monoxide; particle number, black carbon; benzene, toluene, ethylbenzene, and xylenes (BTEX); and methanol were determined for each plume. Thus the automated identification enabled the measurement of an unprecedented number of plumes and pollutants over an extended duration. Emission factors for volatile organic compounds were also measured roadside for the first time using a proton transfer reaction time-of-flight mass spectrometer; this instrument provided the time resolution required for the plume capture technique. Mean emission factors were characteristic of the light-duty gasoline dominated vehicle fleet present at the measurement site, with mean black carbon and particle number emission factors of 35 mg kg−1 and 7.7 × 1014 kg−1, respectively. The use of the plume-by-plume analysis enabled isolation of vehicle emissions, and the elucidation of co-emitted pollutants from similar vehicle types, variability of emissions across the fleet, and the relative contribution from heavy emitters. It was found that a small proportion of the fleet (< 25%) contributed significantly to total fleet emissions; 95, 93, 76, and 75% for black carbon, carbon monoxide, BTEX, and particle number, respectively. Emission factors of a single pollutant may help classify a vehicle as a high emitter. However, regulatory strategies to more efficiently target multi-pollutants mixtures may be better developed by considering the co-emitted pollutants as well.


Sign in / Sign up

Export Citation Format

Share Document