scholarly journals Supplementary material to "Spectral- and size-resolved mass absorption efficiency of mineral dust aerosols in the shortwave: a simulation chamber study"

Author(s):  
Lorenzo Caponi ◽  
Paola Formenti ◽  
Dario Massabó ◽  
Claudia Di Biagio ◽  
Mathieu Cazaunau ◽  
...  
2017 ◽  
Author(s):  
Lorenzo Caponi ◽  
Paola Formenti ◽  
Dario Massabó ◽  
Claudia Di Biagio ◽  
Mathieu Cazaunau ◽  
...  

Abstract. This paper presents new laboratory measurements of the mass absorption efficiency (MAE) between 375 and 850 nm for mineral dust of different origin in two size classes: PM10.6 (mass fraction of particles of aerodynamic diameter lower than 10.6 µm) and PM2.5 (mass fraction of particles of aerodynamic diameter lower than 2.5 µm). Experiments have been performed in the CESAM simulation chamber using generated mineral dust from natural parent soils, and optical and gravimetric analyses. Results show that the MAE values are lower for the PM10.6 mass fraction (range 37–135 × 10−3 m2 g−1 at 375 nm) than for the PM2.5 (range 95–711 × 10−3 m2 g−1 at 375 nm), and decrease with increasing wavelength as λ-AAE, where Angstrom Absorption Exponent (AAE) averages between 3.3–3.5, regardless of size. The size-independence of AAE suggests that, for a given size distribution, the possible variation of dust composition with size would not affect significantly the spectral behavior of shortwave absorption. Because of its high atmospheric concentration, light-absorption by mineral dust can be competitive to black and brown carbon even during atmospheric transport over heavy polluted regions, when dust concentrations are significantly lower than at emission. The AAE values of mineral dust are higher than for black carbon (~ 1), but in the same range as light-absorbing organic (brown) carbon. As a result, depending on the environment, there can be some ambiguity in apportioning the AAOD based on spectral dependence, which is relevant to the development of remote sensing of light-absorption aerosols from space, and their assimilation in climate models. We suggest that the sample-to-sample variability in our dataset of MAE values is related to regional differences of the mineralogical composition of the parent soils. Particularly in the PM2.5 fraction, we found a strong linear correlation between the dust light-absorption properties and elemental iron rather than the iron oxide fraction, which could ease the application and the validation of climate models that now start to include the representation of the dust composition, as well as for remote sensing of dust absorption in the UV-VIS spectral region.


2017 ◽  
Vol 17 (11) ◽  
pp. 7175-7191 ◽  
Author(s):  
Lorenzo Caponi ◽  
Paola Formenti ◽  
Dario Massabó ◽  
Claudia Di Biagio ◽  
Mathieu Cazaunau ◽  
...  

Abstract. This paper presents new laboratory measurements of the mass absorption efficiency (MAE) between 375 and 850 nm for 12 individual samples of mineral dust from different source areas worldwide and in two size classes: PM10. 6 (mass fraction of particles of aerodynamic diameter lower than 10.6 µm) and PM2. 5 (mass fraction of particles of aerodynamic diameter lower than 2.5 µm). The experiments were performed in the CESAM simulation chamber using mineral dust generated from natural parent soils and included optical and gravimetric analyses. The results show that the MAE values are lower for the PM10. 6 mass fraction (range 37–135  ×  10−3 m2 g−1 at 375 nm) than for the PM2. 5 (range 95–711  ×  10−3 m2 g−1 at 375 nm) and decrease with increasing wavelength as λ−AAE, where the Ångström absorption exponent (AAE) averages between 3.3 and 3.5, regardless of size. The size independence of AAE suggests that, for a given size distribution, the dust composition did not vary with size for this set of samples. Because of its high atmospheric concentration, light absorption by mineral dust can be competitive with black and brown carbon even during atmospheric transport over heavy polluted regions, when dust concentrations are significantly lower than at emission. The AAE values of mineral dust are higher than for black carbon (∼ 1) but in the same range as light-absorbing organic (brown) carbon. As a result, depending on the environment, there can be some ambiguity in apportioning the aerosol absorption optical depth (AAOD) based on spectral dependence, which is relevant to the development of remote sensing of light-absorbing aerosols and their assimilation in climate models. We suggest that the sample-to-sample variability in our dataset of MAE values is related to regional differences in the mineralogical composition of the parent soils. Particularly in the PM2. 5 fraction, we found a strong linear correlation between the dust light-absorption properties and elemental iron rather than the iron oxide fraction, which could ease the application and the validation of climate models that now start to include the representation of the dust composition, as well as for remote sensing of dust absorption in the UV–vis spectral region.


Tellus B ◽  
2011 ◽  
Vol 63 (4) ◽  
pp. 725-741 ◽  
Author(s):  
Josef Gasteiger ◽  
Matthias Wiegner ◽  
Silke Groß ◽  
Volker Freudenthaler ◽  
Carlos Toledano ◽  
...  

2020 ◽  
Author(s):  
Ramiro Checa-Garcia ◽  
Yves Balkanski ◽  
Tommi Bergman ◽  
Ken Carslaw ◽  
Mohit Dalvi ◽  
...  

<p>Mineral dust aerosols participate in the climate system and biogeochemistry processes due to its interactions with key components of Earth Systems: radiation, clouds, soil and chemical components. A central element to improve our understanding of mineral dust is through its modeling with Earth Systems Models where all these interactions are included. However, current simulations of dust variability exhibit important uncertainties and biases, which are model-dependent, whose cause is our imperfect knowledge about how to best represent the dust life cycle. For these reasons a continuous evaluation of the performance and properties of the different models compared against measurements is a crucial step to improve our knowledge of the dust cycle and its role in the climate system and biogeochemical cycles. Here we present an exhaustive evaluation of mineral dust aerosols in CRESCEND-ESMs over global, regional and local scales. We compare models against three networks of instruments for total dust deposition flux, yearly surface concentrations, and optical depths. Global and regional dust optical depths are compared with MODIS and MISR derived products. Specific analyses are done over the Sahel region where improved and compressive dust observational datasets are available. The results indicate that all the models capture the general properties of the global dust cycle, although the role of larger particles remains challenging. Differences are partially due to surface winds as nudged simulations improve the inter-model comparison and the performance in optical depth compared to MODIS. At the regional scale, there is an optical depth reasonable agreement over main source areas, but a joint inter-comparison including fluxes and concentration indicates larger differences. At the local scale, the uncertainties increase and current models are not able to reproduce together several observables at the same time.</p>


2009 ◽  
Vol 43 (34) ◽  
pp. 5463-5468 ◽  
Author(s):  
Eliezer Ganor ◽  
Amnon Stupp ◽  
Pinhas Alpert

Sign in / Sign up

Export Citation Format

Share Document