scholarly journals Is Mass Transfer in Secondary Organic Aerosol Particles Intrinsically Slow? Equilibration Timescales of Engine Exhaust and α-Pinene SOA Under Dry and Humid Conditions

2018 ◽  
Author(s):  
Khairallah Atwi ◽  
Mohamad Baassiri ◽  
Mariam Fawaz ◽  
Alan Shihadeh

Abstract. Semi-volatile secondary organic aerosols (SOA) comprise a major fraction of ambient particle pollutants. The partitioning of SOA in the atmosphere has commonly been assumed to be fast enough that it could be computed solely from thermodynamic equilibrium considerations e.g., using Raoult's Law. This simplifying assumption has been called into question by recent studies of single SOA particles evaporating in a zero-vapor concentration environment, which reported unexpectedly slow evaporation relative to atmospheric timescales. In this work we directly investigated the phase equilibration kinetics of systems of SOA particles under realistic atmospheric conditions. SOA was generated in an oxidation flow reactor (OFR) from engine exhaust or α-pinene and mixed with clean air in an atmospheric pressure smog chamber (32 °C) to induce evaporation. The evolution of the particle size distribution was monitored over time as the aerosol system returned to phase equilibrium under different particle concentrations (2.5 and 5 µg m−3) and humidity conditions (

1980 ◽  
Vol 45 (10) ◽  
pp. 2728-2741 ◽  
Author(s):  
Pavel Fott ◽  
Petr Schneider

Kinetics have been studied of the reaction system taking place during the reaction of thiophene on the cobalt-molybdenum catalyst in a gradientless circulation flow reactor at 360 °C and atmospheric pressure. Butane has been found present in a small amount in the reaction products even at very low conversion. In view of this, consecutive and parallel-consecutive (triangular) reaction schemes have been proposed. In the former scheme the appearance of butane is accounted for by rate of desorption of butene being comparable with the rate of its hydrogenation. According to the latter scheme part of the butane originates from thiophene via a different route than through hydrogenation of butene. Analysis of the kinetic data has revealed that the reaction of thiophene should be considered to take place on other active sites than that of butene. Kinetic equations derived on this assumption for the consecutive and the triangular reaction schemes correlate experimental data with acceptable accuracy.


2016 ◽  
Vol 16 (3) ◽  
pp. 1417-1431 ◽  
Author(s):  
Y. S. La ◽  
M. Camredon ◽  
P. J. Ziemann ◽  
R. Valorso ◽  
A. Matsunaga ◽  
...  

Abstract. Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool, which explicitly represents SOA formation and gas–wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas–wall mass transfer, the vapor pressure of the species and the duration of the experiments. This work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.


1980 ◽  
Vol 45 (10) ◽  
pp. 2742-2750 ◽  
Author(s):  
Pavel Fott ◽  
Petr Schneider

Hydrogenation has been studied of ethylene and butene in a circulation flow reactor on a cobalt-molybdenum catalyst at 360 °C and atmospheric pressure. The effect has been investigated of simultaneous hydrodesulphurization of thiophene on the hydrogenation. The results have confirmed that different active sites for hydrogenation and hydrodesulphurization must be considered in the kinetic description of simultaneous hydrogenation of ethylene and hydrodesulphurization of thiophene. For isolated hydrogenation of ethylene and butene the absence of hydrogen sulphide in the reaction mixture considerably enhances the hydrogenation activity of the catalyst due to the change of its state.


2015 ◽  
Vol 15 (15) ◽  
pp. 9049-9062 ◽  
Author(s):  
T. Liu ◽  
X. Wang ◽  
W. Deng ◽  
Q. Hu ◽  
X. Ding ◽  
...  

Abstract. In China, a rapid increase in passenger vehicles has led to the growing concern of vehicle exhaust as an important source of anthropogenic secondary organic aerosol (SOA) in megacities hard hit by haze. In this study, the SOA formation of emissions from two idling light-duty gasoline vehicles (LDGVs) (Euro 1 and Euro 4) operated in China was investigated in a 30 m3 smog chamber. Five photo-oxidation experiments were carried out at 25 °C with relative humidity at around 50 %. After aging at an OH exposure of 5 × 106 molecules cm−3 h, the formed SOA was 12–259 times as high as primary organic aerosol (POA). The SOA production factors (PF) were 0.001–0.044 g kg−1 fuel, comparable with those from the previous studies at comparable OH exposure. This quite lower OH exposure than that in typical atmospheric conditions might however lead to the underestimation of the SOA formation potential from LDGVs. Effective SOA yields in this study were well fit by a one-product gas-particle partitioning model but quite lower than those of a previous study investigating SOA formation from three idling passenger vehicles (Euro 2–4). Traditional single-ring aromatic precursors and naphthalene could explain 51–90 % of the formed SOA. Unspeciated species such as branched and cyclic alkanes might be the possible precursors for the unexplained SOA. A high-resolution time-of-flight aerosol mass spectrometer was used to characterize the chemical composition of SOA. The relationship between f43 (ratio of m/z 43, mostly C2H3O+, to the total signal in mass spectrum) and f44 (mostly CO2+) of the gasoline vehicle exhaust SOA is similar to the ambient semi-volatile oxygenated organic aerosol (SV-OOA). We plot the O : C and H : C molar ratios of SOA in a Van Krevelen diagram. The slopes of ΔH : C / ΔO : C ranged from −0.59 to −0.36, suggesting that the oxidation chemistry in these experiments was a combination of carboxylic acid and alcohol/peroxide formation.


2021 ◽  
Author(s):  
Petro Uruci ◽  
Anthoula D. Drosatou ◽  
Dontavious Sippial ◽  
Spyros N. Pandis

<p>Secondary organic aerosol (SOA) constitutes a major fraction of the total organic aerosol (OA) in the atmosphere. SOA is formed by the partitioning onto pre-existent particles of low vapor pressure products of the oxidation of volatile, intermediate volatility, and semivolatile organic compounds. Oxidation of the precursor molecules results a myriad of organic products making the detailed analysis of smog chamber experiments difficult and the incorporation of the corresponding results into chemical transport models (CTMs) challenging. The volatility basis set (VBS) is a framework that has been designed to help bridge the gap between laboratory measurements and CTMs. It describes the volatility distribution of the OA and the SOA. The parametrization of SOA formation for the VBS has been traditionally based on fitting yield measurements of smog chamber experiments. To reduce the uncertainty of this approach we developed an algorithm to estimate parameters such as volatility product distribution, effective vaporization enthalpy, and accommodation coefficient combining SOA yield measurements with thermograms (from thermodenuders) and areograms (from isothermal dilution chambers) from different experiments and laboratories. The algorithm was first evaluated with “pseudo-data” produced from the simulation of the corresponding processes assuming SOA with known properties. The results showed excellent agreement and low uncertainties when the volatility range and the mass loadings range of the yield measurements coincide. One of the major features of our approach is that it estimates the uncertainty of the resulting parameterization for different atmospheric conditions (temperature, concentration levels, etc.). In the last step of the work, the use of the algorithm with realistic smog laboratory data is demonstrated.</p>


2015 ◽  
Vol 15 (17) ◽  
pp. 23893-23930 ◽  
Author(s):  
Y. S. La ◽  
M. Camredon ◽  
P. J. Ziemann ◽  
R. Valorso ◽  
A. Matsunaga ◽  
...  

Abstract. Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool which explicitly represents SOA formation and gas/wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas/wall mass transfer, the vapor pressure of the species and the duration of the experiments. This work suggests that SOA yields inferred from chamber experiments could be underestimated up to 0.35 yield unit due to the loss of organic vapors to chamber walls.


2021 ◽  
Author(s):  
Zhe Peng ◽  
Julia Lee-Taylor ◽  
Harald Stark ◽  
John J. Orlando ◽  
Bernard Aumont ◽  
...  

Abstract. OH reactivity (OHR) is an important control on the oxidative capacity in the atmosphere but remains poorly constrained. For an improved understanding of OHR, its evolution during oxidation of volatile organic compounds (VOCs) is a major aspect requiring better quantification. We use the fully explicit Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) model to study the OHR evolution in the low-NO photooxidation of several VOCs, including decane (an alkane), m-xylene (an aromatic), and isoprene (an alkene). Oxidation progressively produces more saturated and functionalized species. Total organic OHR (including precursor and products, OHRVOC) first increases for decane (as functionalization increases OH rate coefficients), and m-xylene (as much more reactive oxygenated alkenes are formed). For isoprene, C=C bond consumption leads to a rapid drop in OHRVOC before significant production of the first main saturated multifunctional product, i.e., isoprene epoxydiol. The saturated multifunctional species in the oxidation of different precursors have similar average OHRVOC per C atom. The latter oxidation follows a similar course for different precursors, involving fragmentation of multifunctional species to eventual oxidation of C1 and C2 fragments to CO2, leading to a similar evolution of OHRVOC per C atom. An upper limit of the total OH consumption during complete oxidation to CO2 is roughly 3 per C atom. We also explore the trends in radical recycling ratios. We show that differences in the evolution of OHRVOC between the atmosphere and an environmental chamber, and between the atmosphere and an oxidation flow reactor (OFR) can be substantial, with the former being even larger, but these differences are often smaller than between precursors. The Teflon wall losses of oxygenated VOCs in chambers result in substantial deviations of OHRVOC from atmospheric conditions, especially for the oxidation of larger precursors, where multifunctional species may suffer near-complete wall losses, resulting in significant underestimation of OHRVOC. For OFR, the deviations of OHRVOC evolution from the atmospheric case are mainly due to significant OHR contribution from RO2 and lack of efficient organic photolysis. The former can be avoided by lowering the UV lamp setting in OFR, while the latter is shown to be very difficult to avoid. However, the former may significantly offset the slowdown in fragmentation of multifunctional species due to lack of efficient organic photolysis.


2021 ◽  
Vol 21 (19) ◽  
pp. 14649-14669
Author(s):  
Zhe Peng ◽  
Julia Lee-Taylor ◽  
Harald Stark ◽  
John J. Orlando ◽  
Bernard Aumont ◽  
...  

Abstract. OH reactivity (OHR) is an important control on the oxidative capacity in the atmosphere but remains poorly constrained in many environments, such as remote, rural, and urban atmospheres, as well as laboratory experiment setups under low-NO conditions. For an improved understanding of OHR, its evolution during oxidation of volatile organic compounds (VOCs) is a major aspect requiring better quantification. We use the fully explicit Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) model to study the OHR evolution in the NO-free photooxidation of several VOCs, including decane (an alkane), m-xylene (an aromatic), and isoprene (an alkene). Oxidation progressively produces more saturated and functionalized species. Total organic OHR (including precursor and products, OHRVOC) first increases for decane (as functionalization increases OH rate coefficients) and m-xylene (as much more reactive oxygenated alkenes are formed). For isoprene, C=C bond consumption leads to a rapid drop in OHRVOC before significant production of the first main saturated multifunctional product, i.e., isoprene epoxydiol. The saturated multifunctional species in the oxidation of different precursors have similar average OHRVOC per C atom. The latter oxidation follows a similar course for different precursors, involving fragmentation of multifunctional species to eventual oxidation of C1 and C2 fragments to CO2, leading to a similar evolution of OHRVOC per C atom. An upper limit of the total OH consumption during complete oxidation to CO2 is roughly three per C atom. We also explore the trends in radical recycling ratios. We show that differences in the evolution of OHRVOC between the atmosphere and an environmental chamber, and between the atmosphere and an oxidation flow reactor (OFR), can be substantial, with the former being even larger, but these differences are often smaller than between precursors. The Teflon wall losses of oxygenated VOCs in chambers result in large deviations of OHRVOC from atmospheric conditions, especially for the oxidation of larger precursors, where multifunctional species may suffer substantial wall losses, resulting in significant underestimation of OHRVOC. For OFR, the deviations of OHRVOC evolution from the atmospheric case are mainly due to significant OHR contribution from RO2 and lack of efficient organic photolysis. The former can be avoided by lowering the UV lamp setting in OFR, while the latter is shown to be very difficult to avoid. However, the former may significantly offset the slowdown in fragmentation of multifunctional species due to lack of efficient organic photolysis.


2019 ◽  
Author(s):  
Angela Buchholz ◽  
Andrew T. Lambe ◽  
Arttu Ylisirniö ◽  
Zijun Li ◽  
Olli-Pekka Tikkanen ◽  
...  

Abstract. The volatility of oxidation products of volatile organic compounds (VOCs) in the atmosphere is a key factor to determine if they partition into the particle phase contributing to secondary organic aerosol (SOA) mass. Thus, linking volatility and measured particle composition will provide insights into SOA formation and its fate in the atmosphere. We produced a-pinene SOA with three different oxidation levels (characterised by average oxygen to carbon ratio, O : C = 0.53, 0.69, and 0.96) in an oxidation flow reactor. We investigated the particle volatility by isothermal evaporation in clean air as a function of relative humidity (RH 


Sign in / Sign up

Export Citation Format

Share Document