Kinetics of the catalytic hydrodesulphurization reaction system; hydrogenation of ethylene and butene

1980 ◽  
Vol 45 (10) ◽  
pp. 2742-2750 ◽  
Author(s):  
Pavel Fott ◽  
Petr Schneider

Hydrogenation has been studied of ethylene and butene in a circulation flow reactor on a cobalt-molybdenum catalyst at 360 °C and atmospheric pressure. The effect has been investigated of simultaneous hydrodesulphurization of thiophene on the hydrogenation. The results have confirmed that different active sites for hydrogenation and hydrodesulphurization must be considered in the kinetic description of simultaneous hydrogenation of ethylene and hydrodesulphurization of thiophene. For isolated hydrogenation of ethylene and butene the absence of hydrogen sulphide in the reaction mixture considerably enhances the hydrogenation activity of the catalyst due to the change of its state.

1980 ◽  
Vol 45 (10) ◽  
pp. 2728-2741 ◽  
Author(s):  
Pavel Fott ◽  
Petr Schneider

Kinetics have been studied of the reaction system taking place during the reaction of thiophene on the cobalt-molybdenum catalyst in a gradientless circulation flow reactor at 360 °C and atmospheric pressure. Butane has been found present in a small amount in the reaction products even at very low conversion. In view of this, consecutive and parallel-consecutive (triangular) reaction schemes have been proposed. In the former scheme the appearance of butane is accounted for by rate of desorption of butene being comparable with the rate of its hydrogenation. According to the latter scheme part of the butane originates from thiophene via a different route than through hydrogenation of butene. Analysis of the kinetic data has revealed that the reaction of thiophene should be considered to take place on other active sites than that of butene. Kinetic equations derived on this assumption for the consecutive and the triangular reaction schemes correlate experimental data with acceptable accuracy.


1986 ◽  
Vol 51 (12) ◽  
pp. 2760-2769
Author(s):  
Jana Samková ◽  
Karel Klusáček ◽  
Petr Schneider

Hydrogenation of ethylene on a Co-Mo/Al2O3 catalyst at 353 K and atmospheric pressure has been studied. The unsteady-state method was used, in which reactor feed-rate and feed-composition were changed in a defined way. The analysis of transient response curves proved negligible adsorption of hydrogen and ethane and confirmed the reaction mechanism of ethylene hydrogenation which involves reaction of adsorbed ethylene with hydrogen from gas phase in the rate determining step. Combined stationary and transient experimental data were used to calculate kinetic parameters: rate constant of ethylene hydrogenation, total concentration of active sites on the catalyst surface and equilibrium adsorption coefficient of ethylene.


2018 ◽  
Author(s):  
Khairallah Atwi ◽  
Mohamad Baassiri ◽  
Mariam Fawaz ◽  
Alan Shihadeh

Abstract. Semi-volatile secondary organic aerosols (SOA) comprise a major fraction of ambient particle pollutants. The partitioning of SOA in the atmosphere has commonly been assumed to be fast enough that it could be computed solely from thermodynamic equilibrium considerations e.g., using Raoult's Law. This simplifying assumption has been called into question by recent studies of single SOA particles evaporating in a zero-vapor concentration environment, which reported unexpectedly slow evaporation relative to atmospheric timescales. In this work we directly investigated the phase equilibration kinetics of systems of SOA particles under realistic atmospheric conditions. SOA was generated in an oxidation flow reactor (OFR) from engine exhaust or α-pinene and mixed with clean air in an atmospheric pressure smog chamber (32 °C) to induce evaporation. The evolution of the particle size distribution was monitored over time as the aerosol system returned to phase equilibrium under different particle concentrations (2.5 and 5 µg m−3) and humidity conditions (


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 904
Author(s):  
Chunming Zheng ◽  
Dongxue Wang ◽  
Xudong Hu ◽  
Chao Ma ◽  
Xuan Liu ◽  
...  

Ordered mesoporous nickel (mesoNi) was successfully synthesized with a hard templating method by using KIT-6 ordered mesoporous silica as a template. With small-angle X-ray diffraction (SAXRD), transmission electron microscopy (TEM) and N2 sorption technique, the mesoporous structures of synthesized catalysts were characterized with desired high surface area (84.2 m2·g−1) and narrow pore size distribution. MesoNi exhibited outstanding catalytic cleavage activity for lignin model compounds (benzyl phenyl ether, BPE) with high selectivity of arenes in the flow reactor system. MesoNi also showed higher regeneration rates than non-porous ones, which were confirmed from deactivation and regeneration mechanism studies in the flow reaction system with varied high temperature and pressure. The adsorbed poisoning species on the mesoporous Ni surface were analyzed and phenol could be the main poisoning species. The excellent catalytic cleavage performance of mesoNi originates from their unique mesoporous structure, which offers high surface area and Ni active sites. The outstanding catalytic performance shows that this process provides a promising candidate for improved lignin valorization with general applicability.


1990 ◽  
Vol 55 (4) ◽  
pp. 1033-1037 ◽  
Author(s):  
Alena Hejtmánková ◽  
Karel Jeřábek ◽  
Karel Setínek

Kinetics of methyl tert.butyl ether synthesis from methanol and isobutene was measured in gaseous phase at 85 °C and atmospheric pressure on macroreticular ion exchanger catalyst containing strongly acidic functional groups SO3H and on the same catalyst partially neutralized by sodium and iron ions. The form of the best Langmuir-Hinshelwood type kinetic equation suggests absorption of the reactants in the polymer mass causing ìswellingî of it and influencing the accessibility of active sites by the reactants. Neutralization of the catalyst by metal ions suppresses this effect.


1980 ◽  
Vol 58 (5) ◽  
pp. 479-484 ◽  
Author(s):  
José M. Pazos ◽  
Paulino Andréu

The hydrodesulphurization mechanism of thiophene and tetrahydrothiophene has been developed at high pressures and over a broad range of temperature and contact time on a commercial CoMo—Al2O3 catalyst. The influence of the pretreatment on the catalyst activity and stability was also studied. The pretreatment with a mixture of H2 and H2S was found to be the most convenient. It was found that the sulphur uptake of the fresh catalyst increases with temperature and that an excess of sulphur in the catalyst leads to an initial higher activity.The thiophene reaction seems to occur simultaneously by two pathways: one consists of ring opening, and the second is yielding tetrahydrothiophene. The latter is the slowest step. The tetrahydrothiophene reacts faster than the thiophene and its reaction mechanism involves mainly the rupture of the C—S bond. However, thiophene was detected in small concentrations, showing the contribution of a second route for the tetrahydrothiophene hydrodesulphurization. Experiments carried out with benzene seem to indicate the existence of three different kinds of active sites in the catalyst: desulphurization, aromatics hydrogenation, and olefin saturation sites.On a élaboré le mécanisme d'hydrodésulfurisation du thiophène et du tétrahydrothiophène à haute pression et sur une large échelle de température et de temps de contact avec une catalyseur commercial mixte: CoMo—Al2O3. On a également étudié la stabilité ainsi que l'influence d'un traitement préalable sur l'activité du catalyseur. On a trouvé que le traitement préalable, par un mélange de H2 et de H2S, est celui qui convient le mieux. On a constaté que la fixation de soufre sur le catalyseur frais augmente avec la température et que l'excès de soufre sur le catalyseur conduit à une activité initiale plus forte.


1982 ◽  
Vol 47 (12) ◽  
pp. 3348-3361 ◽  
Author(s):  
Erich Lippert ◽  
Karel Mocek ◽  
Emerich Erdös

The reactivity of the anhydrous carbonates of alkaline metals with sulphur dioxide has been studied experimentally in dependence both on the nature of the cation and on the way of preparation of the anhydrous carbonate. The carbonates were prepared either by thermal decomposition of hydrogen carbonates or by thermal dehydration of carbonate hydrates. The carbonates of lithium, sodium, potassium, rubidium and caesium have been investigated. Kinetic measurements were carried out in a flow reactor in the integral regime at 423 K under atmospheric pressure, with a gas containing 0.2 vol.% of sulphur dioxide and 2.0 vol.% of water vapour in the nitrogen as a carrier gas. The reactivities have been compared on the basis of time dependence of the conversion of carbonate to sulphite.


Sign in / Sign up

Export Citation Format

Share Document